Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Mar 5;206(1):119-32.
doi: 10.1016/0022-2836(89)90528-7.

Two-dimensional 1H nuclear magnetic resonance studies on the gene V-encoded single-stranded DNA-binding protein of the filamentous bacteriophage IKe. I. Structure elucidation of the DNA-binding wing

Affiliations

Two-dimensional 1H nuclear magnetic resonance studies on the gene V-encoded single-stranded DNA-binding protein of the filamentous bacteriophage IKe. I. Structure elucidation of the DNA-binding wing

E A de Jong et al. J Mol Biol. .

Abstract

Two-dimensional nuclear magnetic resonance techniques were used to obtain residue- and sequence-specific assignments in the 1H spectrum of the single-stranded DNA-binding protein encoded by gene V of the filamentous phage IKe (IKe GVP). The residue-specific assignments are based on the analysis of J-correlated spectra, i.e. correlated spectroscopy and homonuclear-Hartmann-Hahn total correlated spectroscopy. Complete assignments of side-chain spin systems, e.g. long side-chains, were, to a major part, derived from two-dimensional spectra obtained by means of the latter technique. Sequence-specific residue assignments were obtained for the two neighbouring residues V41 and Y42, and the amino acid sequence segment encompassing residues S17 through I29. The structure of this segment, a beta-loop, was deduced from the interresidue nuclear Overhauser effect pattern. Residues S17 through V19 and P26 through I29 form an anti-parallel beta-ladder segment, whereas residues Q21 to K25 constitute the loop region. The beta-loop is expected to project into the solution and is intimately involved in binding to single-stranded DNA; it is therefore designated the "DNA-binding wing". By analogy with the structure of the DNA-binding wing deduced from IKe GVP, a similar structure is proposed for the corresponding domain of the gene V protein encoded by the filamentous phage Ff for which, from X-ray diffraction studies, a three-dimensional structure has been deduced. Essential differences appear to exist between the DNA-binding domain in the X-ray structure and that proposed in this paper. Possible reasons for these differences are discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources