Optogenetic approaches addressing extracellular modulation of neural excitability
- PMID: 27045897
- PMCID: PMC4820717
- DOI: 10.1038/srep23947
Optogenetic approaches addressing extracellular modulation of neural excitability
Abstract
The extracellular ionic environment in neural tissue has the capacity to influence, and be influenced by, natural bouts of neural activity. We employed optogenetic approaches to control and investigate these interactions within and between cells, and across spatial scales. We began by developing a temporally precise means to study microdomain-scale interactions between extracellular protons and acid-sensing ion channels (ASICs). By coupling single-component proton-transporting optogenetic tools to ASICs to create two-component optogenetic constructs (TCOs), we found that acidification of the local extracellular membrane surface by a light-activated proton pump recruited a slow inward ASIC current, which required molecular proximity of the two components on the membrane. To elicit more global effects of activity modulation on 'bystander' neurons not under direct control, we used densely-expressed depolarizing (ChR2) or hyperpolarizing (eArch3.0, eNpHR3.0) tools to create a slow non-synaptic membrane current in bystander neurons, which matched the current direction seen in the directly modulated neurons. Extracellular protons played contributory role but were insufficient to explain the entire bystander effect, suggesting the recruitment of other mechanisms. Together, these findings present a new approach to the engineering of multicomponent optogenetic tools to manipulate ionic microdomains, and probe the complex neuronal-extracellular space interactions that regulate neural excitability.
Figures








Similar articles
-
Characterization of proton-induced currents in rat trigeminal mesencephalic nucleus neurons.Brain Res. 2014 Oct 2;1583:12-22. doi: 10.1016/j.brainres.2014.08.009. Epub 2014 Aug 13. Brain Res. 2014. PMID: 25128599
-
Acid-sensing ionic channels in the rat vestibular endorgans and ganglia.J Neurophysiol. 2006 Sep;96(3):1615-24. doi: 10.1152/jn.00378.2006. Epub 2006 Jun 21. J Neurophysiol. 2006. PMID: 16790596
-
Functional characterization of acid-sensing ion channels in cultured neurons of rat inferior colliculus.Neuroscience. 2008 Jun 23;154(2):461-72. doi: 10.1016/j.neuroscience.2008.03.040. Epub 2008 Mar 26. Neuroscience. 2008. PMID: 18456416
-
Receptor for protons: First observations on Acid Sensing Ion Channels.Neuropharmacology. 2015 Jul;94:4-8. doi: 10.1016/j.neuropharm.2014.12.014. Epub 2015 Jan 9. Neuropharmacology. 2015. PMID: 25582296 Review.
-
[Acid-Sensing Ion Channels (ASICs) in pain].Biol Aujourdhui. 2014;208(1):13-20. doi: 10.1051/jbio/2014001. Epub 2014 Jun 23. Biol Aujourdhui. 2014. PMID: 24948015 Review. French.
Cited by
-
Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior.Elife. 2017 Jul 14;6:e18247. doi: 10.7554/eLife.18247. Elife. 2017. PMID: 28708061 Free PMC article.
-
Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates.J Neural Transm (Vienna). 2018 Mar;125(3):547-563. doi: 10.1007/s00702-017-1697-8. Epub 2017 Feb 25. J Neural Transm (Vienna). 2018. PMID: 28238201 Free PMC article. Review.
-
Silencing Neurons: Tools, Applications, and Experimental Constraints.Neuron. 2017 Aug 2;95(3):504-529. doi: 10.1016/j.neuron.2017.06.050. Neuron. 2017. PMID: 28772120 Free PMC article. Review.
-
Optogenetics at the presynapse.Nat Neurosci. 2022 Aug;25(8):984-998. doi: 10.1038/s41593-022-01113-6. Epub 2022 Jul 14. Nat Neurosci. 2022. PMID: 35835882 Review.
-
Estimating Neural Background Input with Controlled and Fast Perturbations: A Bandwidth Comparison between Inhibitory Opsins and Neural Circuits.Front Neural Circuits. 2016 Aug 15;10:58. doi: 10.3389/fncir.2016.00058. eCollection 2016. Front Neural Circuits. 2016. PMID: 27574506 Free PMC article. Review.
References
-
- Poolos N. P., Mauk M. D. & Kocsis J. D. Activity-Evoked Increases in Extracellular Potassium Modulate Presynaptic Excitability in the CA1 Region of the Hippocampus. J. Neurophysiol. 58, 404–416 (1987). - PubMed
-
- Krishtal O. A., Osipchuk Y. V., Shelest T. N. & Smirnoff S. V. Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Res. 436, 352–356 (1987). - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources