Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study
- PMID: 27059021
- PMCID: PMC6364694
- DOI: 10.1007/s11548-016-1395-2
Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study
Abstract
Purpose: This paper presents the results of a large study involving fusion prostate biopsies to demonstrate that temporal ultrasound can be used to accurately classify tissue labels identified in multi-parametric magnetic resonance imaging (mp-MRI) as suspicious for cancer.
Methods: We use deep learning to analyze temporal ultrasound data obtained from 255 cancer foci identified in mp-MRI. Each target is sampled in axial and sagittal planes. A deep belief network is trained to automatically learn the high-level latent features of temporal ultrasound data. A support vector machine classifier is then applied to differentiate cancerous versus benign tissue, verified by histopathology. Data from 32 targets are used for the training, while the remaining 223 targets are used for testing.
Results: Our results indicate that the distance between the biopsy target and the prostate boundary, and the agreement between axial and sagittal histopathology of each target impact the classification accuracy. In 84 test cores that are 5 mm or farther to the prostate boundary, and have consistent pathology outcomes in axial and sagittal biopsy planes, we achieve an area under the curve of 0.80. In contrast, all of these targets were labeled as moderately suspicious in mp-MR.
Conclusion: Using temporal ultrasound data in a fusion prostate biopsy study, we achieved a high classification accuracy specifically for moderately scored mp-MRI targets. These targets are clinically common and contribute to the high false-positive rates associated with mp-MRI for prostate cancer detection. Temporal ultrasound data combined with mp-MRI have the potential to reduce the number of unnecessary biopsies in fusion biopsy settings.
Keywords: Cancer diagnosis; Deep belief network; Deep learning; Prostate cancer; Temporal ultrasound data.
Conflict of interest statement
Figures
References
-
- Azizi S, Imani F, Zhuang B, Tahmasebi A, Kwak JT, Xu S, Uniyal N, Turkbey B, Choyke P, Pinto P, Wood B (2015) Ultrasound-based detection of prostate cancer using automatic feature selection with deep belief networks. Med Image Comput Comput-Assist Interv— MICCAI 2015, pp 70–77. Springer; (2015)
-
- Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. Adv Neural Inf Process Syst 19:153
-
- Correas JM, Tissier AM, Khairoune A, Khoury G, Eiss D, Hélénon O (2013) Ultrasound elastography of the prostate: state of the art. Diagn Interv Imaging 94(5):551–560 - PubMed
-
- Daoud MI, Mousavi P, Imani F, Rohling R, Abolmaesumi P (2013) Tissue classification using ultrasound-induced variations in acoustic backscattering features. IEEE Trans Biomed Eng 60(2):310–320 - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
