Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Mar;45(2):537-45.
doi: 10.2134/jeq2015.05.0256.

Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review

Review

Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review

Caitlin P Youngquist et al. J Environ Qual. 2016 Mar.

Abstract

Antibiotics and antibiotic-resistant bacteria (ARB) enter the environment through municipal and agricultural waste streams and pose a potential risk to human and livestock health through either direct exposure to antibiotic-resistant pathogens or selective pressure on the soil microbial community. This review summarizes current literature on the fate of antibiotics, ARB, and antibiotic resistance genes (ARGs) during anaerobic digestion and composting of manure and wastewater residuals. Studies have shown that removal of antibiotics varies widely during mesophilic anaerobic digestion, even within the same class of antibiotics. Research on ARB shows a wide range of removal under mesophilic conditions, with nearly complete removal under thermophilic conditions. Research on 16 antibiotics in 11 different studies using both bench-scale and farm-scale composting systems demonstrates that composting significantly reduces levels of extractable antibiotics in livestock manure in nearly all cases. Calculated half-lives ranged from 0.9 to 16 d for most antibiotics. There is more limited evidence that levels of ARB are also reduced by composting. Studies of the fate of ARGs show mixed evidence for removal during both mesophilic and thermophilic anaerobic digestion and during thermophilic composting. Antibiotic resistance genes are DNA structures, so they may persist until the DNA structure is degraded, yet the bacterium may have been rendered nonviable long before the DNA is completely degraded. Additional research would be of value to determine optimum anaerobic digestion and composting conditions for removal of ARB and to increase understanding of the fate of ARGs during anaerobic digestion and composting.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources