Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models
- PMID: 27066013
- PMCID: PMC4809900
- DOI: 10.3389/fpls.2016.00274
Predicting In vitro Culture Medium Macro-Nutrients Composition for Pear Rootstocks Using Regression Analysis and Neural Network Models
Abstract
Two modeling techniques [artificial neural network-genetic algorithm (ANN-GA) and stepwise regression analysis] were used to predict the effect of medium macro-nutrients on in vitro performance of pear rootstocks (OHF and Pyrodwarf). The ANN-GA described associations between investigating eight macronutrients (NO[Formula: see text], NH[Formula: see text], Ca(2+), K(+), Mg(2+), PO[Formula: see text], SO[Formula: see text], and Cl(-)) and explant growth parameters [proliferation rate (PR), shoot length (SL), shoot tip necrosis (STN), chlorosis (Chl), and vitrification (Vitri)]. ANN-GA revealed a substantially higher accuracy of prediction than for regression models. According to the ANN-GA results, among the input variables concentrations (mM), NH[Formula: see text] (301.7), and NO[Formula: see text], NH[Formula: see text] (64), SO[Formula: see text] (54.1), K(+) (40.4), and NO[Formula: see text] (35.1) in OHF and Ca(2+) (23.7), NH[Formula: see text] (10.7), NO[Formula: see text] (9.1), NH[Formula: see text] (317.6), and NH[Formula: see text] (79.6) in Pyrodwarf had the highest values of VSR in data set, respectively, for PR, SL, STN, Chl, and Vitri. The ANN-GA showed that media containing (mM) 62.5 NO[Formula: see text], 5.7 NH[Formula: see text], 2.7 Ca(2+), 31.5 K(+), 3.3 Mg(2+), 2.6 PO[Formula: see text], 5.6 SO[Formula: see text], and 3.5 Cl(-) could lead to optimal PR for OHF and optimal PR for Pyrodwarf may be obtained with media containing 25.6 NO[Formula: see text], 13.1 NH[Formula: see text], 5.5 Ca(2+), 35.7 K(+), 1.5 Mg(2+), 2.1 PO[Formula: see text], 3.6 SO[Formula: see text], and 3 Cl(-).
Keywords: in vitro culture medium; macro nutrients; neural network model; optimized medium; regression analysis.
Figures
Similar articles
-
Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation.Plant Methods. 2019 Nov 18;15:136. doi: 10.1186/s13007-019-0520-y. eCollection 2019. Plant Methods. 2019. PMID: 31832078 Free PMC article.
-
Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock.Front Plant Sci. 2016 Oct 19;7:1526. doi: 10.3389/fpls.2016.01526. eCollection 2016. Front Plant Sci. 2016. PMID: 27807436 Free PMC article.
-
High throughput mathematical modeling and multi-objective evolutionary algorithms for plant tissue culture media formulation: Case study of pear rootstocks.PLoS One. 2020 Dec 18;15(12):e0243940. doi: 10.1371/journal.pone.0243940. eCollection 2020. PLoS One. 2020. PMID: 33338074 Free PMC article.
-
Modeling and Optimizing a New Culture Medium for In Vitro Rooting of G×N15 Prunus Rootstock using Artificial Neural Network-Genetic Algorithm.Sci Rep. 2018 Jul 2;8(1):9977. doi: 10.1038/s41598-018-27858-4. Sci Rep. 2018. PMID: 29967468 Free PMC article.
-
Submaximal, Perceptually Regulated Exercise Testing Predicts Maximal Oxygen Uptake: A Meta-Analysis Study.Sports Med. 2016 Jun;46(6):885-97. doi: 10.1007/s40279-015-0465-x. Sports Med. 2016. PMID: 26790419 Review.
Cited by
-
Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation.Plant Methods. 2019 Nov 18;15:136. doi: 10.1186/s13007-019-0520-y. eCollection 2019. Plant Methods. 2019. PMID: 31832078 Free PMC article.
-
Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock.Front Plant Sci. 2016 Oct 19;7:1526. doi: 10.3389/fpls.2016.01526. eCollection 2016. Front Plant Sci. 2016. PMID: 27807436 Free PMC article.
-
Modeling and Optimizing Culture Medium Mineral Composition for in vitro Propagation of Actinidia arguta.Front Plant Sci. 2020 Dec 23;11:554905. doi: 10.3389/fpls.2020.554905. eCollection 2020. Front Plant Sci. 2020. PMID: 33424873 Free PMC article.
-
Modeling and optimizing in vitro percentage and speed callus induction of carrot via Multilayer Perceptron-Single point discrete GA and radial basis function.BMC Biotechnol. 2022 Nov 5;22(1):34. doi: 10.1186/s12896-022-00764-4. BMC Biotechnol. 2022. PMID: 36335321 Free PMC article.
-
Innovation in the Breeding of Common Bean Through a Combined Approach of in vitro Regeneration and Machine Learning Algorithms.Front Genet. 2022 Aug 24;13:897696. doi: 10.3389/fgene.2022.897696. eCollection 2022. Front Genet. 2022. PMID: 36092939 Free PMC article.
References
-
- Ahmadi H., Mottaghitalab M., Nariman-Zadeh N. (2007). Group method of data handling-type neural network prediction of broiler perfor- mance based on dietary metabolizable energy, methionine, and lysine. J. Appl. Poult. Res. 16, 494–501. 10.3382/japr.2006-00074 - DOI
-
- Aranda-Peres A. N., Martinelli A. P., Pereira-Peres L. E., Higashi E. N. (2009). Adjustment of mineral elements in the culture medium for the micropropagation of three Vriesea bromeliads from the Brazilian Atlantic Forest: the importance of calcium. HortScience 44, 106–112.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous