Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun:9:66-70.
doi: 10.1016/j.cobeha.2016.02.005.

GLP-1 influences food and drug reward

Affiliations

GLP-1 influences food and drug reward

Matthew R Hayes et al. Curr Opin Behav Sci. 2016 Jun.

Abstract

Natural rewards, including food, water, sleep and social interactions, are required to sustain life. The neural substrates that regulate the reinforcing effects of these behaviors are also the same neurobiological mechanisms mediating mood, motivation and the rewarding effects of pharmacological stimuli. That the neuropeptide glucagon-like peptide-1 (GLP-1) is under investigation for both the homeostatic and hedonic controls of feeding is not surprising or novel. However, if the neural substrates that underline food reward are shared with other reward-related behaviors generally, then future research should investigate and embrace the likelihood that endogenous and exogenous GLP-1 receptor activation may influence multiple reward-related behaviors. Indeed, studies of the neurobiological mechanisms underlying motivated feeding behavior have informed much of the basic research investigating neural substrates of drug addiction. An emerging literature demonstrates a role for the GLP-1 system in modulating maladaptive reward behaviors, including drug and alcohol consumption. Thus, if GLP-1-based pharmacotherapies are to be used to treat drug addiction and other diseases associated with maladaptive reward behaviors (e.g. obesity and eating disorders), the neuroscience field must conduct systematic, mechanistic neuropharmacological and behavioral studies of each GLP-1 receptor-expressing nucleus within the brain. It is possible that behavioral selectivity may result from these studies, which could inform future approaches to targeting GLP-1R signaling in discrete brain nuclei to treat motivated behaviors. Equally as likely, non-selective effects on natural reward and maladaptive reward behaviors may be observed for GLP-1-based pharmacotherapies. In this case, a better understanding of the effects of increased central GLP-1R activation on motivated behaviors will aid in clinical approaches toward treating aberrant feeding behaviors and/or drug dependence.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the global burden of disease study 2013. Lancet. 2014;384(9945):766–781. - PMC - PubMed
    1. McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, Benca RM, Biggio J, Boggiano MM, Eisenmann JC, Elobeid M. Ten putative contributors to the obesity epidemic. et al. Crit Rev Food Sci Nutr. 2009;49(10):868–913. - PMC - PubMed
    1. Thomas DM, Bouchard C, Church T, Slentz C, Kraus WE, Redman LM, Martin CK, Silva AM, Vossen M, Westerterp K, Heymsfield SB. Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis. Obes Rev. 2012;13(10):835–847. - PMC - PubMed
    1. Rosenbaum M, Kissileff HR, Mayer LE, Hirsch J, Leibel RL. Energy intake in weight-reduced humans. Brain Res. 2010;1350:95–102. This review discusses neuroendocrine changes that occur with reduced body weight loss that promote for weight regain. New theories are put forward regarding evolutionary selection to defend adiposity rather than to defend a lean physiology. - PMC - PubMed
    1. Grill HJ. Distributed neural control of energy balance: Contributions from hindbrain and hypothalamus. Obesity (Silver Spring) 2006;14(Suppl 5):216S–221S. - PubMed

LinkOut - more resources