Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Mar;255(3):595-600.
doi: 10.1007/BF00218796.

Immunohistochemical localization of glial fibrillary acidic protein (GFAP) and vimentin in the subcommissural organ of the Mongolian gerbil (Meriones unguiculatus)

Affiliations

Immunohistochemical localization of glial fibrillary acidic protein (GFAP) and vimentin in the subcommissural organ of the Mongolian gerbil (Meriones unguiculatus)

P Redecker. Cell Tissue Res. 1989 Mar.

Abstract

The chemical composition of intermediate filaments (IF's) in the ependyma of the subcommissural organ (SCO) of the Mongolian gerbil (Meriones unguiculatus) was investigated immunohistochemically in paraffin-embedded tissue. Antibodies against glial fibrillary acidic protein (GFAP), vimentin, neurofilament proteins and cytokeratins were used. Only GFAP and vimentin were detected in the non-specialized diencephalic ependyma and in the ependymocytes of the SCO. Staining could be observed in apical and basal processes of the SCO-cells. The latter processes extended into the posterior commissure up to the subpial surface, thus establishing a well-developed leptomeningeal route of ependymal projections. In contrast to the homogeneous vimentin-labeling, the SCO was particularly immunoreactive for GFAP in its lateral aspects and in the supra- and precommissural parts. The coexpression of GFAP and vimentin in a subclass of SCO-ependymocytes was demonstrated on differentially immunostained semithin sections. The present study confirms the glial nature of the SCO-ependyma, which has been a matter of debate recently. It appears from this investigation that the high degree of secretory activity in the SCO does not necessarily lead to the disappearance of glial IF proteins. Moreover, the SCO-cells belong to the expanding group of mature astroglia, which is characterized by coexpression of GFAP and vimentin. The morphological similarity between SCO-ependymocytes and tanycytes is underscored by their common immunoreactivity against these two IF proteins. In view of the absence of GFAP from the rat SCO, interspecific differences must be considered in the evaluation of the IF protein composition.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Cell Tissue Res. 1987 Apr;248(1):55-61 - PubMed
    1. Eur J Cell Biol. 1981 Dec;26(1):68-82 - PubMed
    1. Neurochem Int. 1983;5(6):785-91 - PubMed
    1. J Biophys Biochem Cytol. 1961 Apr;9:909-10 - PubMed
    1. Folia Primatol (Basel). 1971;15(3):249-63 - PubMed

LinkOut - more resources