Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2016 Apr 12;10(4):e0004636.
doi: 10.1371/journal.pntd.0004636. eCollection 2016 Apr.

Zika Virus Outbreak in Rio de Janeiro, Brazil: Clinical Characterization, Epidemiological and Virological Aspects

Affiliations
Observational Study

Zika Virus Outbreak in Rio de Janeiro, Brazil: Clinical Characterization, Epidemiological and Virological Aspects

Patrícia Brasil et al. PLoS Negl Trop Dis. .

Abstract

Background: In 2015, Brazil was faced with the cocirculation of three arboviruses of major public health importance. The emergence of Zika virus (ZIKV) presents new challenges to both clinicians and public health authorities. Overlapping clinical features between diseases caused by ZIKV, Dengue (DENV) and Chikungunya (CHIKV) and the lack of validated serological assays for ZIKV make accurate diagnosis difficult.

Methodology / principal findings: The outpatient service for acute febrile illnesses in Fiocruz initiated a syndromic clinical observational study in 2007 to capture unusual presentations of DENV infections. In January 2015, an increase of cases with exanthematic disease was observed. Trained physicians evaluated the patients using a detailed case report form that included clinical assessment and laboratory investigations. The laboratory diagnostic algorithm included assays for detection of ZIKV, CHIKV and DENV. 364 suspected cases of Zika virus disease were identified based on clinical criteria between January and July 2015. Of these, 262 (71.9%) were tested and 119 (45.4%) were confirmed by the detection of ZIKV RNA. All of the samples with sequence information available clustered within the Asian genotype.

Conclusions / significance: This is the first report of a ZIKV outbreak in the state of Rio de Janeiro, based on a large number of suspected (n = 364) and laboratory confirmed cases (n = 119). We were able to demonstrate that ZIKV was circulating in Rio de Janeiro as early as January 2015. The peak of the outbreak was documented in May/June 2015. More than half of the patients reported headache, arthralgia, myalgia, non-purulent conjunctivitis, and lower back pain, consistent with the case definition of suspected ZIKV disease issued by the Pan American Health Organization (PAHO). However, fever, when present, was low-intensity and short-termed. In our opinion, pruritus, the second most common clinical sign presented by the confirmed cases, should be added to the PAHO case definition, while fever could be given less emphasis. The emergence of ZIKV as a new pathogen for Brazil in 2015 underscores the need for clinical vigilance and strong epidemiological and laboratory surveillance.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Phylogenetic analysis based on partial E gene nucleic acid sequences (327bp).
Closed circles represent 4 strains of Zika virus from Rio de Janeiro, Brazil 2015. The remaining 6 strains were identical to these 4 and are not shown here. The tree was inferred using the maximum likelihood algorithm based on the Tamura 3-parameter model as implemented in MEGA 6. The numbers shown to the left of the nodes represent bootstrap support values > 70 (1,000 replicates). The tree was rooted with West Nile virus.
Fig 2
Fig 2. Time series for number of cases confirmed (gray background) and not confirmed (white background) for ZIKV between January 1, 2015 and July 31, 2015 in Rio de Janeiro State.
Fig 3
Fig 3. Spatial distribution at Rio de Janeiro State for cases tested positive (black dots), tested negative (dark gray dots) and not tested yet (light gray) for ZIKV between January 1, 2015 and July 31, 2015.
The red dot indicates the Instituto Nacional de Infectologia, where patients were seen.

References

    1. Villabona-Arenas CJ, de Oliveira JL, Capra Cde S, Balarini K, Loureiro M, Fonseca CR, et al. Detection of four dengue serotypes suggests rise in hyperendemicity in urban centers of Brazil. PLoS neglected tropical diseases. 2014;8(2):e2620 Epub 2014/03/04. 10.1371/journal.pntd.0002620 - DOI - PMC - PubMed
    1. Fares RC, Souza KP, Anez G, Rios M. Epidemiological Scenario of Dengue in Brazil. BioMed research international. 2015;2015:321873 Epub 2015/09/29. 10.1155/2015/321873 - DOI - PMC - PubMed
    1. Araujo HR, Carvalho DO, Ioshino RS, Costa-da-Silva AL, Capurro ML. Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics. Insects. 2015;6(2):576–94. Epub 2015/10/16. 10.3390/insects6020576 - DOI - PMC - PubMed
    1. Favaro EA, Dibo MR, Pereira M, Chierotti AP, Rodrigues-Junior AL, Chiaravalloti-Neto F. Aedes aegypti entomological indices in an endemic area for dengue in Sao Paulo State, Brazil. Revista de saude publica. 2013;47(3):588–97. Epub 2013/12/19. . - PubMed
    1. Codeco CT, Honorio NA, Rios-Velasquez CM, Santos Mda C, Mattos IV, Luz SB, et al. Seasonal dynamics of Aedes aegypti (Diptera: Culicidae) in the northernmost state of Brazil: a likely port-of-entry for dengue virus 4. Memorias do Instituto Oswaldo Cruz. 2009;104(4):614–20. Epub 2009/09/02. . - PubMed

Publication types

MeSH terms