Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun:75:112-6.
doi: 10.1016/j.biocel.2016.04.001. Epub 2016 Apr 9.

PLEKHA7: Cytoskeletal adaptor protein at center stage in junctional organization and signaling

Affiliations
Review

PLEKHA7: Cytoskeletal adaptor protein at center stage in junctional organization and signaling

Jimit Shah et al. Int J Biochem Cell Biol. 2016 Jun.

Abstract

PLEKHA7 is a recently characterized component of the cytoplasmic region of epithelial adherens junctions (AJ). It comprises two WW domains, a pleckstrin-homology domain, and proline-rich and coiled-coil domains. PLEKHA7 interacts with cytoplasmic components of the AJ (p120-catenin, paracingulin, afadin), stabilizes the E-cadherin complex by linking it to the minus ends of noncentrosomal microtubules, and stabilizes junctional nectins through the newly identified interactor PDZD11. Similarly to afadin, and unlike E-cadherin and p120-catenin, the localization of PLEKHA7 at AJ is strictly zonular (in the zonula adhaerens subdomain of AJ), and does not extend along the basolateral contacts. Genome-wide association studies and experiments on animal and cellular models show that although PLEKHA7 is not required for organism viability, it is implicated in cardiovascular physiology, hypertension, primary angle closure glaucoma, susceptibility to staphylococcal α-toxin, and epithelial morphogenesis and growth. Thus, PLEKHA7 is a cytoskeletal adaptor protein important for AJ organization, and at the center of junction-associated signaling pathways which fine-tune important pathophysiological processes.

Keywords: Adherens junctions; Afadin; Microtubules; PDZD11; PLEKHA7; Paracingulin; p120catenin.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources