Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2016 Apr;13(4):171-6.
doi: 10.1089/fpd.2015.1963.

The Distribution of 18 Enterotoxin and Enterotoxin-Like Genes in Staphylococcus aureus Strains from Different Sources in East China

Affiliations
Comparative Study

The Distribution of 18 Enterotoxin and Enterotoxin-Like Genes in Staphylococcus aureus Strains from Different Sources in East China

Jinghua Cheng et al. Foodborne Pathog Dis. 2016 Apr.

Abstract

The distribution of 18 staphylococcal enterotoxin (SE) or SE-like (SEl) genes in Staphylococcus aureus strains from different sources in east China was investigated. Among all 496 S. aureus strains, 291 strains carried one or more SE genes. The more frequently occurred genes were sea, seb, seg, selk, sell, selm, selo, and seq; the less frequent occurred genes were sec, selj, and ser. The classic SE genes and the enterotoxin gene cluster (egc) (seg, sei, selm, seln, selo, and/or selu) accounted for 25.67% and 61.68% of all detected genes, respectively. There were three gene clusters (egc, sea-sek-seq, and sed-sej-ser), of which the egc cluster was the important one that could generate novel complexes, and the sea-sek-seq cluster was a close relative to the hospital-acquired methicillin-resistant S. aureus. The SE gene distributions were different among strains of different sources and formed diverse toxin gene profiles. The human- and foodborne-origin strains harbored classic and novel SE and SEl genes, whereas animal-origin strains harbored egc and other novel SE and SEl genes mainly. The foodborne- and human-origin strains were the main dangerous factors of classic staphylococcal foodborne poisoning, whereas the strains (especially from animals) that carried egc and other novel genes mainly should be new potential dangerous factors for food safety.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources