Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2016 Jul-Aug;18(4):520-4.
doi: 10.4103/1008-682X.179527.

Population-standardized genetic risk score: the SNP-based method of choice for inherited risk assessment of prostate cancer

Affiliations
Randomized Controlled Trial

Population-standardized genetic risk score: the SNP-based method of choice for inherited risk assessment of prostate cancer

Carly A Conran et al. Asian J Androl. 2016 Jul-Aug.

Abstract

Several different approaches are available to clinicians for determining prostate cancer (PCa) risk. The clinical validity of various PCa risk assessment methods utilizing single nucleotide polymorphisms (SNPs) has been established; however, these SNP-based methods have not been compared. The objective of this study was to compare the three most commonly used SNP-based methods for PCa risk assessment. Participants were men (n = 1654) enrolled in a prospective study of PCa development. Genotypes of 59 PCa risk-associated SNPs were available in this cohort. Three methods of calculating SNP-based genetic risk scores (GRSs) were used for the evaluation of individual disease risk such as risk allele count (GRS-RAC), weighted risk allele count (GRS-wRAC), and population-standardized genetic risk score (GRS-PS). Mean GRSs were calculated, and performances were compared using area under the receiver operating characteristic curve (AUC) and positive predictive value (PPV). All SNP-based methods were found to be independently associated with PCa (all P < 0.05; hence their clinical validity). The mean GRSs in men with or without PCa using GRS-RAC were 55.15 and 53.46, respectively, using GRS-wRAC were 7.42 and 6.97, respectively, and using GRS-PS were 1.12 and 0.84, respectively (all P < 0.05 for differences between patients with or without PCa). All three SNP-based methods performed similarly in discriminating PCa from non-PCa based on AUC and in predicting PCa risk based on PPV (all P > 0.05 for comparisons between the three methods), and all three SNP-based methods had a significantly higher AUC than family history (all P < 0.05). Results from this study suggest that while the three most commonly used SNP-based methods performed similarly in discriminating PCa from non-PCa at the population level, GRS-PS is the method of choice for risk assessment at the individual level because its value (where 1.0 represents average population risk) can be easily interpreted regardless of the number of risk-associated SNPs used in the calculation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Zhou CK, Check DP, Lortet-Tieulent J, Laversanne M, Jemal A, et al. Prostate cancer incidence in 43 populations worldwide: an analysis of time trends overall and by age group. Int J Cancer. 2016;138:1388–400. - PMC - PubMed
    1. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med. 2012;366:981–90. - PMC - PubMed
    1. Moyer VA. U.S. Preventive Services Task Force. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157:120–34. - PubMed
    1. Hayes JH, Barry MJ. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA. 2014;311:1143–9. - PubMed
    1. Carter HB, Albertsen PC, Barry MJ, Etzioni R, Freedland SJ, et al. Early detection of prostate cancer: AUA guideline. J Urol. 2013;190:419–26. - PMC - PubMed

Publication types