Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 8:7:472.
doi: 10.3389/fpls.2016.00472. eCollection 2016.

Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity

Affiliations

Cross-Regulation between N Metabolism and Nitric Oxide (NO) Signaling during Plant Immunity

Elise Thalineau et al. Front Plant Sci. .

Abstract

Plants are sessile organisms that have evolved a complex immune system which helps them cope with pathogen attacks. However, the capacity of a plant to mobilize different defense responses is strongly affected by its physiological status. Nitrogen (N) is a major nutrient that can play an important role in plant immunity by increasing or decreasing plant resistance to pathogens. Although no general rule can be drawn about the effect of N availability and quality on the fate of plant/pathogen interactions, plants' capacity to acquire, assimilate, allocate N, and maintain amino acid homeostasis appears to partly mediate the effects of N on plant defense. Nitric oxide (NO), one of the products of N metabolism, plays an important role in plant immunity signaling. NO is generated in part through Nitrate Reductase (NR), a key enzyme involved in nitrate assimilation, and its production depends on levels of nitrate/nitrite, NR substrate/product, as well as on L-arginine and polyamine levels. Cross-regulation between NO signaling and N supply/metabolism has been evidenced. NO production can be affected by N supply, and conversely NO appears to regulate nitrate transport and assimilation. Based on this knowledge, we hypothesized that N availability partly controls plant resistance to pathogens by controlling NO homeostasis. Using the Medicago truncatula/Aphanomyces euteiches pathosystem, we showed that NO homeostasis is important for resistance to this oomycete and that N availability impacts NO homeostasis by affecting S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase activity in roots. These results could therefore explain the increased resistance we noted in N-deprived as compared to N-replete M. truncatula seedlings. They open onto new perspectives for the studies of N/plant defense interactions.

Keywords: Aphanomyces euteiches; Medicago truncatula; nitric oxide homeostasis; nitrogen metabolism; plant immunity.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Transformed root validation. (A) Transcript levels of MtNIA1 and MtNIA2 in RNAi::NIA1/2-transformed roots were compared to control transformed roots (control NR). SNO quantification using the Saville–Griess assay and NO quantification using the fluorophore DAF (10 μM). Control NR and RNAi::NIA1/2-transformed roots extracts were pre-incubated or not with 500 μM cPTIO as an NO scavenger. (B) Transcript levels of MtGSNOR in 35S::GSNOR-transformed roots were compared to control transformed roots (control LacZ). SNO quantification using the Saville–Griess assay and NO quantification using the fluorophore DAF (10 μM). Control LacZ and 35S::GSNOR-transformed roots extracts were pre-incubated or not with 500 μM cPTIO as an NO scavenger. Error bars indicate standard errors (n = 4 for transcripts and NO levels; n = 8 for SNO levels), and indicates significant differences (p < 0.05).
FIGURE 2
FIGURE 2
Quantification of Aphanomyces euteiches in extracts from inoculated transformed roots. RNAi::NIA1/2-transformed roots (A) and 35S::GSNOR-transformed roots (B) were extracted for ELISA tests. Roots were cultivated in vitro for 7 days on Fahraeus medium and then inoculated with A. euteiches. The background signal in non-inoculated roots was subtracted from the signal detected in inoculated roots. Error bars indicate standard errors (n = 4), and indicates significant differences (p < 0.05). Data from one representative experiment out of four independent experiments.
FIGURE 3
FIGURE 3
Nitrate reductase (NR) activity and NO3- contents in transformed roots. (A) NR activity in control transformed roots (Control LacZ roots transformed with pK7GWG2D-GFP) and in transformed roots overexpressing GSNOR (35S::GSNOR). Transformed roots were cultivated in vitro on Shb10 medium. (B) NO3- concentrations in control transformed roots (Control LacZ) and GSNOR-overexpressing roots. Transformed roots were cultivated in vitro for 7 days on Fahraeus medium, and inoculated with A. euteiches. Error bars indicate standard errors (n = 4), and letters or indicate significant differences (p < 0.05). Data from one representative experiment out of three independent experiments for both NR activity and NO3- contents (n = 12).
FIGURE 4
FIGURE 4
H2O2, NO, ONOO-, and SNO quantification in Medicago truncatula roots 7 dpi. M. truncatula was cultivated on complete medium or NØ medium, and roots were harvested 7 days after inoculation with A. euteiches and used to detect H2O2, NO, and ONOO- concentrations using fluorescent probes, and SNO concentrations using the Saville–Griess assay. (A) H2O2 quantification using 10 μM Amplex Red® fluorophore and 0.2 U/mL of peroxidase. Catalase (1 U/μL), used as an H2O2 scavenger, abolished Amplex Red® fluorescence. (B) NO quantification using the fluorophore DAF (10 μM). Root extracts were pre-incubated or not with 500 μM cPTIO as an NO scavenger. (C) ONOO- quantification using the fluorophore APF (5 μM). Root extracts were pre-incubated or not with 1 mM of the ONOO- scavenger epicatechin. (D) SNO quantification by the Saville–Griess assay. Error bars indicate standard errors (n = 4 for A–C; n = 14 for D), and letters indicate significant differences (p < 0.05). Data from one representative experiment out of three independent experiments for H2O2, NO, and ONOO-concentrations, and data corresponding to two independent experiments pooled together for SNO concentrations. RFU, relative fluorescence units.
FIGURE 5
FIGURE 5
GSNO reductase activity in M. truncatula roots 7 dpi. M. truncatula seedlings were inoculated or not with A. euteiches, and cultivated on complete medium or NØ medium for 7 days. Root extracts were used to measure GSNOR activity. Error bars indicate standard errors (n = 4), and letters indicate significant differences (p < 0.05). Data from one representative experiment out of four independent experiments.
FIGURE 6
FIGURE 6
Working model. Results from the present work indicate that RNAi::MtNIA1/2 and 35S::GSNOR transformed roots are, respectively, more susceptible and more resistant to A. euteiches (1). NR activity and NO3- content were impacted by GSNOR overexpression, indicating a possible effect of GSNOR on basal NO3- transport/assimilation (2). NO3- availability in the medium causes quantitative modulation of ROS/RNS/NO content and affects their balance (3). Infection by A. euteiches decreases root NO3- content (4) and induces higher ROS levels (5). According to the literature superoxyde (O2⋅-), by reacting with NO to form peroxynitrite, can influence the concentration of NO available for signaling (6). : GSNO was shown to regulate NO3- uptake through transcriptional regulation of NRT2.1 (Frungillo et al., 2014).

Similar articles

Cited by

References

    1. Abramowski D., Arasimowicz-Jelonek M., Izbiańska K., Billert H., Floryszak-Wieczorek J. (2015). Nitric oxide modulates redox-mediated defense in potato challenged with Phytophthora infestans. Eur. J. Plant Pathol. 143 237–260. 10.1007/s10658-015-0677-9 - DOI
    1. Ahlfors R., Brosche M., Kollist H., Kangasjarvi J. (2009). Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J. 58 1–12. 10.1111/j.1365-313X.2008.03756.x - DOI - PubMed
    1. Ashtamker C., Kiss V., Sagi M., Davydov O., Fluhr R. (2007). Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco bright Yellow-2 cells. Plant Physiol. 143 1817–1826. 10.1104/pp.106.090902 - DOI - PMC - PubMed
    1. Astier J., Besson-Bard A., Lamotte O., Bertoldo J., Bourque S., Terenzi H., et al. (2012). Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco cells. Biochem. J. 447 249–260. 10.1042/BJ20120257 - DOI - PubMed
    1. Astier J., Lindermayr C. (2012). Nitric oxide-dependent posttranslational modification in plants: an update. Int. J. Mol. Sci. 13 15193–15208. 10.3390/ijms131115193 - DOI - PMC - PubMed

LinkOut - more resources