Microtubule nucleation and organization in dendrites
- PMID: 27097122
- PMCID: PMC4957598
- DOI: 10.1080/15384101.2016.1172158
Microtubule nucleation and organization in dendrites
Abstract
Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies.
Keywords: Augmin; Golgi outpost; dendrite; microtubule nucleation; microtubule polarity; neuron morphology; pericentriolar material.
Figures



Similar articles
-
Centrosomin represses dendrite branching by orienting microtubule nucleation.Nat Neurosci. 2015 Oct;18(10):1437-45. doi: 10.1038/nn.4099. Epub 2015 Aug 31. Nat Neurosci. 2015. PMID: 26322925
-
Golgi Outposts Locally Regulate Microtubule Orientation in Neurons but Are Not Required for the Overall Polarity of the Dendritic Cytoskeleton.Genetics. 2020 Jun;215(2):435-447. doi: 10.1534/genetics.119.302979. Epub 2020 Apr 7. Genetics. 2020. PMID: 32265236 Free PMC article.
-
Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons.Neuron. 2012 Dec 6;76(5):921-30. doi: 10.1016/j.neuron.2012.10.008. Neuron. 2012. PMID: 23217741 Free PMC article.
-
Golgi Outposts Nucleate Microtubules in Cells with Specialized Shapes.Trends Cell Biol. 2020 Oct;30(10):792-804. doi: 10.1016/j.tcb.2020.07.004. Epub 2020 Aug 27. Trends Cell Biol. 2020. PMID: 32863092 Review.
-
Nucleating microtubules in neurons: Challenges and solutions.Dev Neurobiol. 2021 Apr;81(3):273-283. doi: 10.1002/dneu.22751. Epub 2020 May 15. Dev Neurobiol. 2021. PMID: 32324945 Review.
Cited by
-
Recent advances in branching mechanisms underlying neuronal morphogenesis.F1000Res. 2018 Nov 12;7:F1000 Faculty Rev-1779. doi: 10.12688/f1000research.16038.1. eCollection 2018. F1000Res. 2018. PMID: 30473771 Free PMC article. Review.
-
An alternative splice isoform of mouse CDK5RAP2 induced cytoplasmic microtubule nucleation.IBRO Neurosci Rep. 2022 Sep 15;13:264-273. doi: 10.1016/j.ibneur.2022.09.004. eCollection 2022 Dec. IBRO Neurosci Rep. 2022. PMID: 36164503 Free PMC article.
-
Microtubule Organization Determines Axonal Transport Dynamics.Neuron. 2016 Oct 19;92(2):449-460. doi: 10.1016/j.neuron.2016.09.036. Neuron. 2016. PMID: 27764672 Free PMC article.
-
Cytoplasmic Dynein Transports Axonal Microtubules in a Polarity-Sorting Manner.Cell Rep. 2017 Jun 13;19(11):2210-2219. doi: 10.1016/j.celrep.2017.05.064. Cell Rep. 2017. PMID: 28614709 Free PMC article.
-
EML2 and EML4 splice variants regulate microtubule remodeling during neuronal cell differentiation.J Biol Chem. 2025 Jun;301(6):110252. doi: 10.1016/j.jbc.2025.110252. Epub 2025 May 19. J Biol Chem. 2025. PMID: 40398603 Free PMC article.
References
-
- London M, Hausser M. Dendritic computation. Annu Rev Neurosci 2005; 28:503-32; PMID:16033324; http://dx.doi.org/ 10.1146/annurev.neuro.28.061604.135703 - DOI - PubMed
-
- Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 2008; 9:206-21; PMID:18270515; http://dx.doi.org/ 10.1038/nrn2286 - DOI - PubMed
-
- Kulkarni VA, Firestein BL. The dendritic tree and brain disorders. Mol Cell Neurosci 2012; 50:10-20; PMID:22465229; http://dx.doi.org/ 10.1016/j.mcn.2012.03.005 - DOI - PubMed
-
- Lefebvre JL, Sanes JR, Kay JN. Development of Dendritic Form and Function. Annu Rev Cell Dev Biol 2015; 31:741-77; PMID:26422333; http://dx.doi.org/ 10.1146/annurev-cellbio-100913-013020 - DOI - PubMed
-
- Cajal SR. Estructura de los centros neviosos de las aves. Rev Trim Histol Normal Patologica 1888; 1:1-10
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases