Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 21:9:43.
doi: 10.1186/s13045-016-0273-2.

iPSC-derived mesenchymal stromal cells are less supportive than primary MSCs for co-culture of hematopoietic progenitor cells

Affiliations

iPSC-derived mesenchymal stromal cells are less supportive than primary MSCs for co-culture of hematopoietic progenitor cells

Theresa Vasko et al. J Hematol Oncol. .

Abstract

In vitro culture of hematopoietic stem and progenitor cells (HPCs) is supported by a suitable cellular microenvironment, such as mesenchymal stromal cells (MSCs)-but MSCs are heterogeneous and poorly defined. In this study, we analyzed whether MSCs derived from induced pluripotent stem cells (iPS-MSCs) provide a suitable cellular feeder layer too. iPS-MSCs clearly supported proliferation of HPCs, maintenance of a primitive immunophenotype (CD34(+), CD133(+), CD38(-)), and colony-forming unit (CFU) potential of CD34(+) HPCs. However, particularly long-term culture-initiating cell (LTC-IC) frequency was lower with iPS-MSCs as compared to primary MSCs. Relevant genes for cell-cell interaction were overall expressed at similar level in MSCs and iPS-MSCs, whereas VCAM1 was less expressed in the latter. In conclusion, our iPS-MSCs support in vitro culture of HPCs; however, under the current differentiation and culture conditions, they are less suitable than primary MSCs from bone marrow.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The hematopoietic supportive function of iPS-MSCs. a CD34+ cells were stained with CFSE and cultured with or without feeder cells for 5 days. Co-culture of HPCs with either MSCs or iPS-MSCs enhanced the number of cell divisions significantly (**P < 0.01; ***P < 0.001; n = 5—each with three biological replicates for MSCs and iPS-MSCs; MFI = mean fluorescence intensity). b Dot plots show CD34 expression in relation to the number of cell divisions (as a reference we used additional measurements at day 0; the number of cell divisions in different CFSE-gates is indicated). c We gated for specific cell division numbers and analyzed the signal intensity of CD34, CD133, CD45, and CD38 as compared to culture without feeder layer (gray). Co-culture with MSCs (red) or iPS-MSCs (blue) led to an increase of CD34 and CD133 expression and a decrease of CD45 expression in proliferating cells (without feeder vs. MSCs: *P < 0.05, **P < 0.01; without feeder vs. iPS-MSCs: # P < 0.05, ## P < 0.01; MSCs vs. iPS-MSCs : § P < 0.05; n = 5—each with three biological replicates for MSCs and iPS-MSCs). d CFU frequency was significantly increased by co-culture with either MSCs or iPS-MSCs (**P < 0.01, n = 3—each with three biological replicates for MSCs and iPS-MSCs). There was no significant bias for specific types of colonies. BFU-E = burst-forming-unit erythroid; CFU-E = colony-forming-unit erythroid; CFU-G = colony-forming-unit granulocyte; CFU-M = colony-forming-unit macrophage; CFU-GM = colony-forming-unit granulocyte, macrophage; CFU-GEMM = colony-forming-unit granulocyte, erythrocyte, macrophage, megakaryocyte. e Frequency of long-term culture initiating cells (LTC-IC) was significantly higher in co-culture with primary bone marrow-derived MSCs as compared to iPS-MSCs or without stromal support (*P < 0.05, **P < 0.01, ***P < 0.001, n = 3—each with three biological replicates for MSCs and iPS-MSCs). Mean ± S.D. is depicted
Fig. 2
Fig. 2
Differences in cell-cell interaction with different feeder layers. a The percentage of HPCs with elongated morphology was scored as described before [6]. Particularly, co-culture with MSCs stimulated cellular elongation (*P < 0.05, n = 3—each with three biological replicates for MSCs and iPS-MSCs). b Gene expression of relevant genes for cellular interaction with HPCs were analyzed in MSCs, iPSCs, and iPS-MSCs. Overall, all genes were expressed at very similar levels in primary MSCs and iPS-MSCs—except for Laminin β1 (LAMB1; higher expressed in iPS-MSCs; **P < 0.01) and vascular cell adhesion molecule 1 (VCAM1; higher expressed in MSCs; **P < 0.01). c Mean fluorescence intensity of VCAM1 (CD106) expression in flow cytometric analysis (three biological replicates for MSCs and iPS-MSCs). Mean ± S.D. is depicted

References

    1. Frobel J, Hemeda H, Lenz M, Abagnale G, Joussen S, Denecke B, Saric T, Zenke M, Wagner W. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Reports. 2014;3:414–22. doi: 10.1016/j.stemcr.2014.07.003. - DOI - PMC - PubMed
    1. Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, Eckstein V, Ho AD, Wagner W. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of hematopoietic progenitor cells. J Cell Mol Med. 2010;14:337–50. doi: 10.1111/j.1582-4934.2009.00776.x. - DOI - PMC - PubMed
    1. Jing D, Fonseca AV, Alakel N, Fierro FA, Muller K, Bornhauser M, Ehninger G, Corbeil D, Ordemann R. Hematopoietic stem cells in co-culture with mesenchymal stromal cells—modeling the niche compartments in vitro. Haematologica. 2010;95:542–50. doi: 10.3324/haematol.2009.010736. - DOI - PMC - PubMed
    1. Wagner W, Saffrich R, Wirkner U, Eckstein V, Blake J, Ansorge A, Schwager C, Wein F, Miesala K, Ansorge W, Ho AD. Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction. Stem Cells. 2005;23:1180–91. doi: 10.1634/stemcells.2004-0361. - DOI - PubMed
    1. Wein F, Pietsch L, Saffrich R, Wuchter P, Walenda T, Bork S, Horn P, Diehlmann A, Eckstein V, Ho AD, Wagner W. N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res. 2010;4:129–39. doi: 10.1016/j.scr.2009.12.004. - DOI - PubMed

Publication types

MeSH terms