Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Dec;3(1):17.
doi: 10.1186/s40348-016-0045-7. Epub 2016 Apr 21.

Alveologenesis: key cellular players and fibroblast growth factor 10 signaling

Affiliations
Review

Alveologenesis: key cellular players and fibroblast growth factor 10 signaling

Cho-Ming Chao et al. Mol Cell Pediatr. 2016 Dec.

Abstract

Background: Alveologenesis is the last stage in lung development and is essential for building the gas-exchanging units called alveoli. Despite intensive lung research, the intricate crosstalk between mesenchymal and epithelial cell lineages during alveologenesis is poorly understood. This crosstalk contributes to the formation of the secondary septae, which are key structures of healthy alveoli.

Conclusions: A better understanding of the cellular and molecular processes underlying the formation of the secondary septae is critical for the development of new therapies to protect or regenerate the alveoli. This review summarizes briefly the alveologenesis process in mouse and human. Further, it discusses the current knowledge on the epithelial and mesenchymal progenitor cells during early lung development giving rise to the key cellular players (e.g., alveolar epithelial cell type I, alveolar epithelial cell type II, alveolar myofibroblast, lipofibroblast) involved in alveologenesis. This review focusses mainly on the role of fibroblast growth factor 10 (FGF10), one of the most important signaling molecules during lung development, in epithelial and mesenchymal cell lineage formation.

Keywords: Alveolar epithelial cell type I (AEC I); Alveolar epithelial cell type II (AEC II); Alveolar myofibroblast; Alveologenesis; Fibroblast growth factor 10 (FGF10); Secondary septae.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Schematic representation of alveologenesis and cell types involved. a During the saccular stage, the lung forms primitive alveoli (saccule) surrounded by collagen fibers, nerves, and blood vessels. b The alveolar saccule in the saccular stage is characterized by the presence of AEC I/II, coating the walls of saccule, surfactant production, expansion of capillary tree, production of collagen, and elastin by fibroblasts. c During the alveolar stage, the lung undergoes subdividing of sacs by a process called “secondary septation” that will give rise to mature alveoli. d Secondary septae starts to appear at the place of elastin deposition, which is produced by alveolar MYF. The septae elongates towards the alveolar sac airspace. Double layer of capillaries become thinner giving rise to a one-layer network for more efficient gas exchange. e AEC I/II alveolar epithelial cell type I/II, BADJ broncho-alveolar duct junction, LIF lipofibroblast, MYF myofibroblast

Similar articles

Cited by

References

    1. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371–375. doi: 10.1038/nature13173. - DOI - PMC - PubMed
    1. Kresch MJ, Christian C, Wu F, Hussain N. Ontogeny of apoptosis during lung development. Pediatr Res. 1998;43(3):426–431. doi: 10.1203/00006450-199803000-00020. - DOI - PubMed
    1. Knust J, Ochs M, Gundersen HJ, Nyengaard JR. Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anat Rec (Hoboken) 2009;292(1):113–122. doi: 10.1002/ar.20747. - DOI - PubMed
    1. Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJ. The number of alveoli in the human lung. Am J Respir Crit Care Med. 2004;169(1):120–124. doi: 10.1164/rccm.200308-1107OC. - DOI - PubMed
    1. Chang DR, Martinez Alanis D, Miller RK, Ji H, Akiyama H, McCrea PD, Chen J. Lung epithelial branching program antagonizes alveolar differentiation. Proc Natl Acad Sci U S A. 2013;110(45):18042–18051. doi: 10.1073/pnas.1311760110. - DOI - PMC - PubMed

LinkOut - more resources