Characterization of the Small RNA Transcriptome of the Marine Coccolithophorid, Emiliania huxleyi
- PMID: 27101007
- PMCID: PMC4839659
- DOI: 10.1371/journal.pone.0154279
Characterization of the Small RNA Transcriptome of the Marine Coccolithophorid, Emiliania huxleyi
Abstract
Small RNAs (smRNAs) control a variety of cellular processes by silencing target genes at the transcriptional or post-transcription level. While extensively studied in plants, relatively little is known about smRNAs and their targets in marine phytoplankton, such as Emiliania huxleyi (E. huxleyi). Deep sequencing was performed of smRNAs extracted at different time points as E. huxleyi cells transition from logarithmic to stationary phase growth in batch culture. Computational analyses predicted 18 E. huxleyi specific miRNAs. The 18 miRNA candidates and their precursors vary in length (18-24 nt and 71-252 nt, respectively), genome copy number (3-1,459), and the number of genes targeted (2-107). Stem-loop real time reverse transcriptase (RT) PCR was used to validate miRNA expression which varied by nearly three orders of magnitude when growth slows and cells enter stationary phase. Stem-loop RT PCR was also used to examine the expression profiles of miRNA in calcifying and non-calcifying cultures, and a small subset was found to be differentially expressed when nutrients become limiting and calcification is enhanced. In addition to miRNAs, endogenous small RNAs such as ra-siRNAs, ta-siRNAs, nat-siRNAs, and piwiRNAs were predicted along with the machinery for the biogenesis and processing of si-RNAs. This study is the first genome-wide investigation smRNAs pathways in E. huxleyi. Results provide new insights into the importance of smRNAs in regulating aspects of physiological growth and adaptation in marine phytoplankton and further challenge the notion that smRNAs evolved with multicellularity, expanding our perspective of these ancient regulatory pathways.
Conflict of interest statement
Figures
References
-
- Holligan PM, Viollier M, Harbour DS, Camus P, Champagne-Philippe M. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature. 1983;304: 339–342.
-
- Smith S V. Parsing the oceanic calcium carbonate cycle: a net atmospheric carbon dioxide source, or a sink? Anderson MR, editor. Association for the Sciences of Limnology and Oceanography; 2013.
-
- Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep Sea Res Part II Top Stud Oceanogr. 2001;49: 219–236.
-
- Klaas C, Archer DE. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochem Cycles. 2002;16: 63–1–63–14.
-
- Marlowe IT, Green JC, Neal AC, Brassell SC, Eglinton G, Course PA. Long chain (n -C 37 –C 39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. Br Phycol J. Taylor & Francis; 1984;19: 203–216.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
