Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease
- PMID: 27102485
- PMCID: PMC5465864
- DOI: 10.1126/science.aaf3926
Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease
Abstract
Influenza A virus (IAV) causes up to half a million deaths worldwide annually, 90% of which occur in older adults. We show that IAV-infected monocytes from older humans have impaired antiviral interferon production but retain intact inflammasome responses. To understand the in vivo consequence, we used mice expressing a functional Mx gene encoding a major interferon-induced effector against IAV in humans. In Mx1-intact mice with weakened resistance due to deficiencies in Mavs and Tlr7, we found an elevated respiratory bacterial burden. Notably, mortality in the absence of Mavs and Tlr7 was independent of viral load or MyD88-dependent signaling but dependent on bacterial burden, caspase-1/11, and neutrophil-dependent tissue damage. Therefore, in the context of weakened antiviral resistance, vulnerability to IAV disease is a function of caspase-dependent pathology.
Copyright © 2016, American Association for the Advancement of Science.
Figures




Similar articles
-
RIG-I Signaling via MAVS Is Dispensable for Survival in Lethal Influenza Infection In Vivo.Mediators Inflamm. 2018 Nov 8;2018:6808934. doi: 10.1155/2018/6808934. eCollection 2018. Mediators Inflamm. 2018. PMID: 30532653 Free PMC article.
-
Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I.Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13910-5. doi: 10.1073/pnas.1303275110. Epub 2013 Aug 5. Proc Natl Acad Sci U S A. 2013. PMID: 23918369 Free PMC article.
-
TLR7 contributes to the rapid progression but not to the overall fatal outcome of secondary pneumococcal disease following influenza A virus infection.J Innate Immun. 2013;5(1):84-96. doi: 10.1159/000345112. Epub 2012 Nov 15. J Innate Immun. 2013. PMID: 23154432 Free PMC article.
-
Mx genes: host determinants controlling influenza virus infection and trans-species transmission.Hum Genet. 2020 Jun;139(6-7):695-705. doi: 10.1007/s00439-019-02092-8. Epub 2019 Nov 26. Hum Genet. 2020. PMID: 31773252 Free PMC article. Review.
-
Mx GTPases: dynamin-like antiviral machines of innate immunity.Trends Microbiol. 2015 Mar;23(3):154-63. doi: 10.1016/j.tim.2014.12.003. Epub 2015 Jan 6. Trends Microbiol. 2015. PMID: 25572883 Review.
Cited by
-
Infiltration of inflammatory macrophages and neutrophils and widespread pyroptosis in lung drive influenza lethality in nonhuman primates.PLoS Pathog. 2022 Mar 10;18(3):e1010395. doi: 10.1371/journal.ppat.1010395. eCollection 2022 Mar. PLoS Pathog. 2022. PMID: 35271686 Free PMC article.
-
On the Origin of Neutrophil Extracellular Traps in COVID-19.Front Immunol. 2022 Mar 11;13:821007. doi: 10.3389/fimmu.2022.821007. eCollection 2022. Front Immunol. 2022. PMID: 35359960 Free PMC article. Review.
-
High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells.Sci Immunol. 2022 Feb 4;7(68):eabl5652. doi: 10.1126/sciimmunol.abl5652. Epub 2022 Feb 4. Sci Immunol. 2022. PMID: 34914544 Free PMC article.
-
Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism.Aging Cell. 2020 Apr;19(4):e13127. doi: 10.1111/acel.13127. Epub 2020 Feb 27. Aging Cell. 2020. PMID: 32107839 Free PMC article.
-
Inflammasomes and Pyroptosis as Therapeutic Targets for COVID-19.J Immunol. 2020 Jul 15;205(2):307-312. doi: 10.4049/jimmunol.2000513. Epub 2020 Jun 3. J Immunol. 2020. PMID: 32493814 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
- AI064705/AI/NIAID NIH HHS/United States
- R01 HL125501/HL/NHLBI NIH HHS/United States
- 5T32HL066987-13/HL/NHLBI NIH HHS/United States
- HHMI/Howard Hughes Medical Institute/United States
- R01 HL102101/HL/NHLBI NIH HHS/United States
- R01HL125501/HL/NHLBI NIH HHS/United States
- R56 AI062428/AI/NIAID NIH HHS/United States
- AI062428/AI/NIAID NIH HHS/United States
- R01 AI062428/AI/NIAID NIH HHS/United States
- K24 AG042489/AG/NIA NIH HHS/United States
- T32 AI007019-36/AI/NIAID NIH HHS/United States
- T32 HL066987/HL/NHLBI NIH HHS/United States
- T32 AI007019/AI/NIAID NIH HHS/United States
- T32 AI055403/AI/NIAID NIH HHS/United States
- P30 AG21342/AG/NIA NIH HHS/United States
- R01 AI064705/AI/NIAID NIH HHS/United States
- HHSN272201100019C/AI/NIAID NIH HHS/United States
- T32 AI007019-38/AI/NIAID NIH HHS/United States
- R01 AI081884/AI/NIAID NIH HHS/United States
- P30 AG021342/AG/NIA NIH HHS/United States
- HHSN272201100019I/AI/NIAID NIH HHS/United States
- K24 AG02489/AG/NIA NIH HHS/United States
- R01HL102101/HL/NHLBI NIH HHS/United States
- AI081884/AI/NIAID NIH HHS/United States
- F31 AG039163/AG/NIA NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous