Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr;185(4):411-22.
doi: 10.1667/RR14237.1.

c-Myc Sustains Transformed Phenotype and Promotes Radioresistance of Embryonal Rhabdomyosarcoma Cell Lines

Affiliations

c-Myc Sustains Transformed Phenotype and Promotes Radioresistance of Embryonal Rhabdomyosarcoma Cell Lines

G L Gravina et al. Radiat Res. 2016 Apr.

Abstract

We have previously reported that the MEK/ERK pathway sustains in vitro and in vivo transformed phenotype and radioresistance of embryonal rhabdomyosarcoma (ERMS) cell lines. Furthermore, we found that aberrant MEK/ERK signaling activation promotes c-Myc oncoprotein accumulation. In this study, the role of c-Myc in sustaining the ERMS transformed and radioresistant phenotype is characterized. RD and TE671 cell lines conditionally expressing MadMyc chimera protein, c-Myc-dominant negative and shRNA directed to c-Myc were used. Targeting c-Myc counteracted in vitro ERMS adherence and in suspension, growth motility and the expression of pro-angiogenic factors. c-Myc depletion decreased MMP-9, MMP-2, u-PA gelatinolytic activity, neural cell adhesion molecule sialylation status, HIF-1α, VEGF and increased TSP-1 protein expression levels. Rapid but not sustained targeting c-Myc radiosensitized ERMS cells by radiation-induced apoptosis, DNA damage and impairing the expression of DNA repair proteins RAD51 and DNA-PKcs, thereby silencing affected ERMS radioresistance. c-Myc sustains ERMS transformed phenotype and radioresistance by protecting cancer cells from radiation-induced apoptosis and DNA damage, while promoting radiation-induced DNA repair. This data suggest that c-Myc targeting can be tested as a promising treatment in cancer therapy.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources