Global Dynamics and Exchange Kinetics of a Protein on the Surface of Nanoparticles Revealed by Relaxation-Based Solution NMR Spectroscopy
- PMID: 27111298
- PMCID: PMC5590658
- DOI: 10.1021/jacs.6b02654
Global Dynamics and Exchange Kinetics of a Protein on the Surface of Nanoparticles Revealed by Relaxation-Based Solution NMR Spectroscopy
Abstract
The global motions and exchange kinetics of a model protein, ubiquitin, bound to the surface of negatively charged lipid-based nanoparticles (liposomes) are derived from combined analysis of exchange lifetime broadening arising from binding to nanoparticles of differing size. The relative contributions of residence time and rotational tumbling to the total effective correlation time of the bound protein are modulated by nanoparticle size, thereby permitting the various motional and exchange parameters to be determined. The residence time of ubiquitin bound to the surface of both large and small unilamellar liposomes is ∼20 μs. Bound ubiquitin undergoes internal rotation about an axis approximately perpendicular to the lipid surface on a low microsecond time scale (∼2 μs), while simultaneously wobbling in a cone of semiangle 30-55° centered about the internal rotation axis on the nanosecond time scale. The binding interface of ubiquitin with liposomes is mapped by intermolecular paramagnetic relaxation enhancement using Gd(3+)-tagged vesicles, to a predominantly positively charged surface orthogonal to the internal rotation axis.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM. Nature. 2011;480:268–272. - PMC - PubMed
- Libich DS, Fawzi NL, Ying J, Clore GM. Proc Natl Acad Sci U S A. 2013;110:11361–11366. - PMC - PubMed
- Libich DS, Tugarinov V, Clore GM. Proc Natl Acad Sci U S A. 2015;112:8817–8823. - PMC - PubMed
- Anthis NJ, Clore GM. Q Rev Biophys. 2015;48:35–116. - PMC - PubMed
-
- Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R. Crit Rev Ther Drug Carrier Syst. 2009;26:523–580. - PMC - PubMed
- Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Chem Rev. 2013;113:1904–2074. - PubMed
- Ceccon A, Lelli M, D’Onofrio M, Molinari H, Assfalg M. J Am Chem Soc. 2014;136:13158–13161. - PubMed
- Ceccon A, Busato M, Perez Santero S, D’Onofrio M, Musiani F, Giorgetti A, Assfalg M. Chem Bio Chem. 2015;16:2633–2645. - PubMed
-
- Calzolai L, Franchini F, Gilliland D, Rossi F. Nano Lett. 2010;10:3101–3105. - PubMed
- Wang A, Vo T, Le V, Fitzkee NC. J Phys Chem B. 2014;118:14148–14156. - PubMed
- Brahmkhatri VP, Chandra K, Dubey A, Atreya HS. Nanoscale. 2015;7:12921–12931. - PubMed
- Zanzoni S, Ceccon A, Assfalg M, Singh RK, Fushman D, D’Onofrio M. Nanoscale. 2015;7:7197–7205. - PMC - PubMed
- Zanzoni S, Pedroni M, D’Onofrio M, Speghini A, Assfalg M. J Am Chem Soc. 2016;138:72–75. - PubMed
-
- Tjandra N, Feller SE, Pastor RW, Bax A. J Am Chem Soc. 1995;117:12562–12566.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
