Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun;100(12):5205-14.
doi: 10.1007/s00253-016-7555-z. Epub 2016 Apr 25.

Insights into the mechanism of enzymatic hydrolysis of xylan

Affiliations
Review

Insights into the mechanism of enzymatic hydrolysis of xylan

L R S Moreira et al. Appl Microbiol Biotechnol. 2016 Jun.

Abstract

Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of lignocellulosic biomass and developments of environmentally friendly industrial processes, increasing research activities have been directed to a practical application of the xylan component of plants and plant residues as biopolymer resources. A variety of enzymes, including main- and side-chain acting enzymes, are responsible for xylan breakdown. Xylanase is a main-chain enzyme that randomly cleaves the β-1,4 linkages between the xylopyranosyl residues in xylan backbone. This enzyme presents varying folds, mechanisms of action, substrate specificities, hydrolytic activities, and physicochemical characteristics. This review pays particular attention to different aspects of the mechanisms of action of xylan-degrading enzymes and their contribution to improve the production of bioproducts from plant biomass. Furthermore, the influence of phenolic compounds on xylanase activity is also discussed.

Keywords: Hemicellulases; Phenolic compounds; Xylan; Xylanases.

PubMed Disclaimer

LinkOut - more resources