Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul;5(14):1740-52.
doi: 10.1002/adhm.201600074. Epub 2016 Apr 26.

Osteoanabolic Implant Materials for Orthopedic Treatment

Affiliations

Osteoanabolic Implant Materials for Orthopedic Treatment

Yun-Fei Ding et al. Adv Healthc Mater. 2016 Jul.

Abstract

Osteoporosis is becoming more prevalent due to the aging demographics of many populations. Osteoporotic bone is more prone to fracture than normal bone, and current orthopedic implant materials are not ideal for the osteoporotic cases. A newly developed strontium phosphate (SrPO4 ) coating is reported herein, and applied to Ti-29Nb-13Ta-4.6Zr (wt%), TNTZ, an implant material with a comparative Young's modulus to that of natural bone. The SrPO4 coating is anticipated to modulate the activity of osteoblast (OB) and osteoclast (OC) cells, in order to promote bone formation. TNTZ, a material with excellent biocompatibility and high bioinertness is pretreated in a concentrated alkaline solution under hydrothermal conditions, followed by a hydrothermal coating growth process to achieve complete SrPO4 surface coverage with high bonding strength. Owing to the release of Sr ions from the SrPO4 coating and its unique surface topography, OB cells demonstrate increased proliferation and differentiation, while the cellular responses of OC are suppressed, compared to the control case, i.e., bare TNTZ. This TNTZ implant with a near physiologic Young's modulus and a functional SrPO4 coating provides a new direction in the design and manufacture of implantable devices used in the management of orthopedic conditions in osteoporotic individuals.

Keywords: bone fracture; orthopedic implants; osteoporosis; strontium phosphate; titanium.

PubMed Disclaimer

Publication types

LinkOut - more resources