Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Nov:37:12-24.
doi: 10.1016/j.bpobgyn.2016.03.006. Epub 2016 Apr 1.

Cellular and Animal Studies: Insights into Pathophysiology and Therapy of PCOS

Affiliations
Review

Cellular and Animal Studies: Insights into Pathophysiology and Therapy of PCOS

Inthrani Raja Indran et al. Best Pract Res Clin Obstet Gynaecol. 2016 Nov.

Abstract

Basic science studies have advanced our understanding of the role of key enzymes in the steroidogenesis pathway and those that affect the pathophysiology of PCOS. Studies with ovarian theca cells taken from women with PCOS have demonstrated increased androgen production due to increased CYP17A1 and HSD3B2 enzyme activities. Furthermore, overexpression of DENND1A variant 2 in normal theca cells resulted in a PCOS phenotype with increased androgen production. Notably, cellular steroidogenesis models have facilitated the understanding of the mechanistic effects of pharmacotherapies, including insulin sensitizers (e.g., pioglitazone and metformin) used for the treatment of insulin resistance in PCOS, on androgen production. In addition, animal models of PCOS have provided a critical platform to study the effects of therapeutic agents in a manner closer to the physiological state. Indeed, recent breakthroughs have demonstrated that natural derivatives such as the dietary medium-chain fatty acid decanoic acid (DA) can restore estrous cyclicity and lower androgen levels in an animal model of PCOS, thus laying the platform for novel therapeutic developments in PCOS. This chapter reviews the current understanding on the pathways modulating androgen biosynthesis, and the cellular and animal models that form the basis for preclinical research in PCOS, and sets the stage for clinical research.

Keywords: androgen; animal models; polycystic ovarian syndrome; steroidogenesis.

PubMed Disclaimer

MeSH terms