Myelin-specific Th17 cells induce severe relapsing optic neuritis with irreversible loss of retinal ganglion cells in C57BL/6 mice
- PMID: 27122964
- PMCID: PMC4830397
Myelin-specific Th17 cells induce severe relapsing optic neuritis with irreversible loss of retinal ganglion cells in C57BL/6 mice
Abstract
Purpose: Optic neuritis affects most patients with multiple sclerosis (MS), and current treatments are unreliable. The purpose of this study was to characterize the contribution of Th1 and Th17 cells to the development of optic neuritis.
Methods: Mice were passively transferred myelin-specific Th1 or Th17 cells to induce experimental autoimmune encephalomyelitis (EAE), a model of neuroautoimmunity. Visual acuity was assessed daily with optokinetic tracking, and 1, 2, and 3 weeks post-induction, optic nerves and retinas were harvested for immunohistochemical analyses.
Results: Passive transfer experimental autoimmune encephalomyelitis elicits acute episodes of asymmetric visual deficits and is exacerbated in Th17-EAE relative to Th1-EAE. The Th17-EAE optic nerves contained more inflammatory infiltrates and an increased neutrophil to macrophage ratio. Significant geographic degeneration of the retinal ganglion cells accompanied Th17-EAE but not Th1.
Conclusions: Th17-induced transfer EAE recapitulates pathologies observed in MS-associated optic neuritis, namely, monocular episodes of vision loss, optic nerve inflammation, and geographic retinal ganglion cell (RGC) degeneration.
Figures






Similar articles
-
Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis.Mol Vis. 2016 Dec 30;22:1503-1513. eCollection 2016. Mol Vis. 2016. PMID: 28050123 Free PMC article.
-
Retinal ganglion cell damage induced by spontaneous autoimmune optic neuritis in MOG-specific TCR transgenic mice.J Neuroimmunol. 2006 Sep;178(1-2):40-8. doi: 10.1016/j.jneuroim.2006.05.019. Epub 2006 Jul 7. J Neuroimmunol. 2006. PMID: 16828169
-
Roles of Treg/Th17 Cell Imbalance and Neuronal Damage in the Visual Dysfunction Observed in Experimental Autoimmune Optic Neuritis Chronologically.Neuromolecular Med. 2015 Dec;17(4):391-403. doi: 10.1007/s12017-015-8368-4. Epub 2015 Aug 30. Neuromolecular Med. 2015. PMID: 26318182
-
MOG35 - 55-induced EAE model of optic nerve inflammation compared to MS, MOGAD and NMOSD related subtypes of human optic neuritis.J Neuroinflammation. 2025 Apr 7;22(1):102. doi: 10.1186/s12974-025-03424-4. J Neuroinflammation. 2025. PMID: 40197321 Free PMC article. Review.
-
The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis.Hum Immunol. 2020 May;81(5):237-243. doi: 10.1016/j.humimm.2020.02.009. Epub 2020 Feb 28. Hum Immunol. 2020. PMID: 32122685 Review.
Cited by
-
Glial pathology and retinal neurotoxicity in the anterior visual pathway in experimental autoimmune encephalomyelitis.Acta Neuropathol Commun. 2019 Jul 31;7(1):125. doi: 10.1186/s40478-019-0767-6. Acta Neuropathol Commun. 2019. PMID: 31366377 Free PMC article.
-
Transforming growth factor receptor III (Betaglycan) regulates the generation of pathogenic Th17 cells in EAE.Front Immunol. 2023 Feb 6;14:1088039. doi: 10.3389/fimmu.2023.1088039. eCollection 2023. Front Immunol. 2023. PMID: 36855628 Free PMC article.
-
Dimethyl fumarate mitigates optic neuritis.Mol Vis. 2019 Aug 22;25:446-461. eCollection 2019. Mol Vis. 2019. PMID: 31523122 Free PMC article.
-
Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis.Mol Vis. 2016 Dec 30;22:1503-1513. eCollection 2016. Mol Vis. 2016. PMID: 28050123 Free PMC article.
-
Retinal pathology in spontaneous opticospinal experimental autoimmune encephalitis mice.J Neuroimmunol. 2022 Jun 15;367:577859. doi: 10.1016/j.jneuroim.2022.577859. Epub 2022 Mar 31. J Neuroimmunol. 2022. PMID: 35395486 Free PMC article.
References
-
- Pinholt M, Frederiksen JL, Andersen PS, Christiansen M. Apo E in multiple sclerosis and optic neuritis: the apo E-epsilon4 allele is associated with progression of multiple sclerosis. Mult Scler. 2005;11:511–5. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&lis... - PubMed
-
- Kaur P, Bennett JL. Optic neuritis and the neuro-ophthalmology of multiple sclerosis. Int Rev Neurobiol. 2007;79:633–63. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&lis... - PubMed
-
- Beck RW, Cleary PA, Backlund JC. The course of visual recovery after optic neuritis. Experience of the Optic Neuritis Treatment Trial. Ophthalmology. 1994;101:1771–8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&lis... - PubMed
-
- Fjeldstad C, Bemben M, Pardo G. Reduced retinal nerve fiber layer and macular thickness in patients with multiple sclerosis with no history of optic neuritis identified by the use of spectral domain high-definition optical coherence tomography. J Clin Neurosci. 2011;18:1469–72. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&lis... - PubMed
-
- Brusaferri F, Candelise L. Steroids for multiple sclerosis and optic neuritis: a meta-analysis of randomized controlled clinical trials. J Neurol. 2000;247:435–42. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&lis... - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources