Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Apr 20:10:19-25.
doi: 10.4137/BBI.S34610. eCollection 2016.

Use of Metatranscriptomics in Microbiome Research

Affiliations
Review

Use of Metatranscriptomics in Microbiome Research

Stavros Bashiardes et al. Bioinform Biol Insights. .

Abstract

The human intestinal microbiome is a microbial ecosystem that expresses as many as 100 times more genes than the human host, thereby constituting an important component of the human holobiome, which contributes to multiple health and disease processes. As most commensal species are difficult or impossible to culture, genomic characterization of microbiome composition and function, under various environmental conditions, comprises a central tool in understanding its roles in health and disease. The first decade of microbiome research was mainly characterized by usage of DNA sequencing-based 16S rDNA and shotgun metagenome sequencing, allowing for the elucidation of microbial composition and genome structure. Technological advances in RNA-seq have recently provided us with an ability to gain insight into the genes that are actively expressed in complex bacterial communities, enabling the elucidation of the functional changes that dictate the microbiome functions at given contexts, its interactions with the host, and functional alterations that accompany the conversion of a healthy microbiome toward a disease-driving configuration. Here, we highlight some of the key metatranscriptomics strategies that are implemented to determine microbiota gene expression and its regulation and discuss the advantages and potential challenges associated with these approaches.

Keywords: RNA-Seq; bacteria; gut; microbiome; next generation sequencing; transcriptome.

PubMed Disclaimer

References

    1. Lederberg J, McCray AT. ’Ome Sweet ’Omics – a genealogical treasury of words. Scientist. 2001;15:8.
    1. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8. - PMC - PubMed
    1. Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell. 2006;127(2):423–33. - PMC - PubMed
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. - PubMed
    1. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979–84. - PMC - PubMed