Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016:2016:2183026.
doi: 10.1155/2016/2183026. Epub 2016 Apr 5.

ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury

Affiliations
Review

ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury

Letteria Minutoli et al. Oxid Med Cell Longev. 2016.

Abstract

Ischemia and reperfusion (I/R) causes a reduction in arterial blood supply to tissues, followed by the restoration of perfusion and consequent reoxygenation. The reestablishment of blood flow triggers further damage to the ischemic tissue through reactive oxygen species (ROS) accumulation, interference with cellular ion homeostasis, and inflammatory responses to cell death. In normal conditions, ROS mediate important beneficial responses. When their production is prolonged or elevated, harmful events are observed with peculiar cellular changes. In particular, during I/R, ROS stimulate tissue inflammation and induce NLRP3 inflammasome activation. The mechanisms underlying the activation of NLRP3 are several and not completely elucidated. It was recently shown that NLRP3 might sense directly the presence of ROS produced by normal or malfunctioning mitochondria or indirectly by other activators of NLRP3. Aim of the present review is to describe the current knowledge on the role of NLRP3 in some organs (brain, heart, kidney, and testis) after I/R injury, with particular regard to the role played by ROS in its activation. Furthermore, as no specific therapy for the prevention or treatment of the high mortality and morbidity associated with I/R is available, the state of the art of the development of novel therapeutic approaches is illustrated.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic representation of ischemia/reperfusion injury and of potential therapeutic strategies to modulate oxidative stress and/or related NLRP3 activation.

Similar articles

Cited by

References

    1. Eltzschig H. K., Eckle T. Ischemia and reperfusion—from mechanism to translation. Nature Medicine. 2011;17(11):1391–1401. doi: 10.1038/nm.2507. - DOI - PMC - PubMed
    1. Kalogeris T., Baines C. P., Krenz M., Korthuis R. J. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology. 2012;298:229–317. doi: 10.1016/b978-0-12-394309-5.00006-7. - DOI - PMC - PubMed
    1. Carden D. L., Granger D. N. Pathophysiology of ischaemia-reperfusion injury. The Journal of Pathology. 2000;190(3):255–266. doi: 10.1002/(sici)1096-9896(200002)190:3<255::aid-path526>3.0.co;2-6. - DOI - PubMed
    1. Lei X., Chao H., Zhang Z., et al. Neuroprotective effects of quercetin in a mouse model of brain ischemic/reperfusion injury via anti-apoptotic mechanisms based on the Akt pathway. Molecular Medicine Reports. 2015;12(3):3688–3696. doi: 10.3892/mmr.2015.3857. - DOI - PubMed
    1. Martinon F. Signaling by ROS drives inflammasome activation. European Journal of Immunology. 2010;40(3):616–619. doi: 10.1002/eji.200940168. - DOI - PubMed

Substances