Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Apr 29;48(1):38.
doi: 10.1186/s12711-016-0217-x.

Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare

Affiliations
Review

Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare

Prashanth Suravajhala et al. Genet Sel Evol. .

Abstract

In the past years, there has been a remarkable development of high-throughput omics (HTO) technologies such as genomics, epigenomics, transcriptomics, proteomics and metabolomics across all facets of biology. This has spearheaded the progress of the systems biology era, including applications on animal production and health traits. However, notwithstanding these new HTO technologies, there remains an emerging challenge in data analysis. On the one hand, different HTO technologies judged on their own merit are appropriate for the identification of disease-causing genes, biomarkers for prevention and drug targets for the treatment of diseases and for individualized genomic predictions of performance or disease risks. On the other hand, integration of multi-omic data and joint modelling and analyses are very powerful and accurate to understand the systems biology of healthy and sustainable production of animals. We present an overview of current and emerging HTO technologies each with a focus on their applications in animal and veterinary sciences before introducing an integrative systems genomics framework for analysing and integrating multi-omic data towards improved animal production, health and welfare. We conclude that there are big challenges in multi-omic data integration, modelling and systems-level analyses, particularly with the fast emerging HTO technologies. We highlight existing and emerging systems genomics approaches and discuss how they contribute to our understanding of the biology of complex traits or diseases and holistic improvement of production performance, disease resistance and welfare.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Overview of integrated genomics with various other ‘omics’ platforms/data types created via array-based or spectrometry or NGS technologies and systems genomics analyses. a Collection of multiple types of ‘omics’ datasets in farm or companion animals in controlled experimental conditions or in field experiments. b Systems genomics involves analysis of single-layer (vertical arrows) and multi-layer ‘omic’ datasets (horizontal arrow) ranging from GWAS, differential expression or methylation analyses through proteomic/metabolomic datasets to eQTL/mQTL/pQTL and network analyses. c Typical results of systems genomics involve single- and multi-layer analyses from GWAS Manhattan plots, genome-wide epistatic heat plots, variant detection or transcript counts in NGS data and gene expression heat plots through eQTL maps, gene regulatory or co-expression networks of eQTL or protein–protein interaction (PPI) networks to networks of differentially connected genes. The eSNP/eQTL box plot is taken from Kogelman et al. [115]. The remaining images in this panel are from the authors’ own unpublished material. d Potential applications of such approaches involve identification of causal genes or pathways, biomarkers, drug targets, various networks for a specific trait level or disease state and individualized genomic predictions of performance or disease risk

References

    1. van der Sijde MR, Ng A, Fu J. Systems genetics: from GWAS to disease pathways. Biochim Biophys Acta. 2014;1842:1903–1909. doi: 10.1016/j.bbadis.2014.04.025. - DOI - PubMed
    1. Morrison N, Cochrane G, Faruque N, Tatusova T, Tateno Y, Hancock D, et al. Concept of sample in OMICS technology. OMICS. 2006;10:127–137. doi: 10.1089/omi.2006.10.127. - DOI - PubMed
    1. Kadarmideen HN, von Rohr P, Janss LL. From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mamm Genome. 2006;17:548–564. doi: 10.1007/s00335-005-0169-x. - DOI - PMC - PubMed
    1. Kadarmideen HN. Genomics to systems biology in animal and veterinary sciences: progress, lessons and opportunities. Livest Sci. 2014;166:232–248. doi: 10.1016/j.livsci.2014.04.028. - DOI
    1. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, et al. The Ensembl genome database project. Nucleic Acids Res. 2002;30:38–41. doi: 10.1093/nar/30.1.38. - DOI - PMC - PubMed

LinkOut - more resources