Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug;11(8):677-81.
doi: 10.1038/nnano.2016.63. Epub 2016 May 2.

Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer

Affiliations

Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer

L Thiel et al. Nat Nanotechnol. 2016 Aug.

Abstract

Microscopic studies of superconductors and their vortices play a pivotal role in understanding the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray fields enable access to fundamental aspects such as nanoscale variations in superfluid densities or the order parameter symmetry of superconductors. However, experimental tools that offer quantitative, nanoscale magnetometry and operate over large ranges of temperature and magnetic fields are still lacking. Here, we demonstrate the first operation of a cryogenic scanning quantum sensor in the form of a single nitrogen-vacancy electronic spin in diamond, which is capable of overcoming these existing limitations. To demonstrate the power of our approach, we perform quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBa2Cu3O7-δ. With a sensor-to-sample distance of ∼10 nm, we observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, and find excellent quantitative agreement with Pearl's analytic model. Our experiments provide a non-invasive and unambiguous determination of the system's local penetration depth and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning nitrogen-vacancy magnetometry.

PubMed Disclaimer

References

    1. Phys Rev Lett. 2006 Oct 20;97(16):167002 - PubMed
    1. Rev Sci Instrum. 2014 Jan;85(1):013701 - PubMed
    1. Nat Nanotechnol. 2016 Aug;11(8):700-5 - PubMed
    1. Science. 2002 Jan 18;295(5554):466-9 - PubMed
    1. Phys Rev Lett. 2011 Feb 25;106(8):080802 - PubMed

Publication types

LinkOut - more resources