Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Apr 28;17(5):643.
doi: 10.3390/ijms17050643.

The Role of Chemokines in Promoting Colorectal Cancer Invasion/Metastasis

Affiliations
Review

The Role of Chemokines in Promoting Colorectal Cancer Invasion/Metastasis

Yoshiro Itatani et al. Int J Mol Sci. .

Abstract

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Although most of the primary CRC can be removed by surgical resection, advanced tumors sometimes show recurrences in distant organs such as the liver, lung, lymph node, bone or peritoneum even after complete resection of the primary tumors. In these advanced and metastatic CRC, it is the tumor-stroma interaction in the tumor microenvironment that often promotes cancer invasion and/or metastasis through chemokine signaling. The tumor microenvironment contains numerous host cells that may suppress or promote cancer aggressiveness. Several types of host-derived myeloid cells reside in the tumor microenvironment, and the recruitment of them is under the control of chemokine signaling. In this review, we focus on the functions of chemokine signaling that may affect tumor immunity by recruiting several types of bone marrow-derived cells (BMDC) to the tumor microenvironment of CRC.

Keywords: cancer immunity; colon cancer; myeloid cells; tumor microenvironment.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Chemokine signaling that mediates interactions between CRC cells and myeloid cells in the tumor microenvironment.

References

    1. Vogelstein B., Kinzler K.W. Cancer genes and the pathways they control. Nat. Med. 2004;10:789–799. doi: 10.1038/nm1087. - DOI - PubMed
    1. Fearon E.R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767. doi: 10.1016/0092-8674(90)90186-I. - DOI - PubMed
    1. Meads M.B., Gatenby R.A., Dalton W.S. Environment-mediated drug resistance: A major contributor to minimal residual disease. Nat. Rev. Cancer. 2009;9:665–674. doi: 10.1038/nrc2714. - DOI - PubMed
    1. Balkwill F. Cancer and the chemokine network. Nat. Rev. Cancer. 2004;4:540–550. doi: 10.1038/nrc1388. - DOI - PubMed
    1. Müller A., Homey B., Soto H., Ge N., Catron D., Buchanan M.E., McClanahan T., Murphy E., Yuan W., Wagner S.N., et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;140:50–56. doi: 10.1038/35065016. - DOI - PubMed