Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 May 15;49(10):2621-5.

Denitrosation of 1,3-bis(2-chloroethyl)-1-nitrosourea by class mu glutathione transferases and its role in cellular resistance in rat brain tumor cells

Affiliations
  • PMID: 2713846

Denitrosation of 1,3-bis(2-chloroethyl)-1-nitrosourea by class mu glutathione transferases and its role in cellular resistance in rat brain tumor cells

M T Smith et al. Cancer Res. .

Abstract

1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) is known to be detoxified by a denitrosation reaction catalyzed by glutathione-dependent enzymes in rat liver cytosol (R. E. Talcott and V. A. Levin, Drug Metab. Dispos., 11:175-176, 1983). Using a modification of their procedure, we have measured the ability of different purified rat glutathione transferase isoenzymes to denitrosate BCNU. The catalytic efficiencies of the isoenzymes for the denitrosation reaction expressed as the ratio of Vmax to Km were as follows (isoenzyme, Vmax/Km): 1-2, 2.3; 3-3, 12.2; 3-4, 29.2; and 4-4, 26.1. Thus, the class mu isoenzymes containing subunit 4 are by far the best catalysts of the BCNU denitrosation reaction. The class pi transferase 7-7 and class alpha transferases 1-1 and 1-2 demonstrated very weak catalytic activity with BCNU. Determination of the glutathione transferase isoenzyme profiles of 9L rat brain tumor cells and the BCNU-resistant 9L-2 subline by immunoblotting revealed that although the resistant 9L-2 cells contain lower total glutathione transferase activity than 9L cells, they have elevated levels of the class mu transferases. Also, the class pi transferases were found to be down-regulated in 9L-2 as compared with 9L cells. Thus, the increased resistance of 9L-2 cells to BCNU may, in part, be explained by up-regulation of class mu transferase expression with consequent increased capacity for BCNU detoxication. Further support for this hypothesis comes from the fact that pretreatment of 9L-2 cells with the glutathione transferase inhibitors ethacrynic acid or triphenyltin chloride enhanced the cytotoxic effects of BCNU. These results suggest that the class mu transferases play a role in the resistance of brain tumor cells to BCNU.

PubMed Disclaimer

Publication types

LinkOut - more resources