Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016;49(5):e5420.
doi: 10.1590/1414-431X20165420. Epub 2016 Apr 29.

Overview of Zika virus (ZIKV) infection in regards to the Brazilian epidemic

Affiliations
Review

Overview of Zika virus (ZIKV) infection in regards to the Brazilian epidemic

S N Slavov et al. Braz J Med Biol Res. 2016.

Abstract

Zika virus (ZIKV), a mosquito-borne flavivirus, belongs to the Flaviviridae family, genus Flavivirus. ZIKV was initially isolated in 1947 from a sentinel monkey in the Zika forest, Uganda. Little clinical importance was attributed to ZIKV, once only few symptomatic cases were reported in some African and Southeast Asiatic countries. This situation changed in 2007, when a large outbreak was registered on the Yap Island, Micronesia, caused by the Asian ZIKV lineage. Between 2013 and 2014, ZIKV spread explosively and caused many outbreaks in different islands of the Southern Pacific Ocean and in 2015 autochthonous transmission was reported in Brazil. Currently, Brazil is the country with the highest number of ZIKV-positive cases in Latin America. Moreover, for the first time after the discovery of ZIKV, the Brazilian scientists are studying the possibility for the virus to cause severe congenital infection related to microcephaly and serious birth defects due to the time-spatial coincidence of the alarming increase of newborns with microcephaly and the Brazilian ZIKV epidemic. The present review summarizes recent information for ZIKV epidemiology, clinical picture, transmission, diagnosis and the consequences of this emerging virus in Brazil.

PubMed Disclaimer

Figures

Figure 1
Figure 1. World epidemiology of ZIKV infection. A, Global expansion of the Asian lineage. After the characterization and isolation of ZIKV in Uganda, until 2007 only few human cases were reported in some African and Southeast Asiatic countries. The first significant ZIKV outbreak was registered in Yap Island, Micronesia, geographically situated close to Indonesia, where ZIKV is endemic (arrow). Between 2013 and 2014, ZIKV was rapidly spread to many of the islands of the Southern Pacific Ocean, causing the largest outbreak in French Polynesia. In 2015, the first autochthonous cases were detected in Brazil. B, Epidemiology of ZIKV infection in Central and South America. Currently, Brazil is the most affected country in South America followed by Colombia (maps adapted from the Pan-American World Health Organization, PAHO, Zika-epidemiological update).
Figure 2
Figure 2. Transmission of ZIKV in its African sylvatic and urban cycles. In nature, it is thought that ZIKV infection is transmitted among non human primates with the help of different forest-dwelling mosquitoes, principally of the Aedes genus. It is unknown how the urban transmission occurs. Probably during heavy rainfalls, the sylvatic mosquito population can grow up progressively and disseminate the virus to nearby villages, and from there to larger urban centers, thus the urban cycle may occur with human-to-human transmission (A). Another possible route for human-to-human ZIKV infection is the direct human invasion of the forest habitats, where the infection can be transmitted to human hosts from forest dwelling mosquitoes (B).

Similar articles

  • The Brazilian Zika virus strain causes birth defects in experimental models.
    Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimarães KP, Benazzato C, Almeida N, Pignatari GC, Romero S, Polonio CM, Cunha I, Freitas CL, Brandão WN, Rossato C, Andrade DG, Faria Dde P, Garcez AT, Buchpigel CA, Braconi CT, Mendes E, Sall AA, Zanotto PM, Peron JP, Muotri AR, Beltrão-Braga PC. Cugola FR, et al. Nature. 2016 Jun 9;534(7606):267-71. doi: 10.1038/nature18296. Epub 2016 May 11. Nature. 2016. PMID: 27279226 Free PMC article.
  • An updated review of Zika virus.
    Abushouk AI, Negida A, Ahmed H. Abushouk AI, et al. J Clin Virol. 2016 Nov;84:53-58. doi: 10.1016/j.jcv.2016.09.012. Epub 2016 Oct 3. J Clin Virol. 2016. PMID: 27721110 Review.
  • [The Recent Epidemic Spread of Zika Virus Disease].
    Lim CK. Lim CK. Uirusu. 2018;68(1):1-12. doi: 10.2222/jsv.68.1. Uirusu. 2018. PMID: 31105130 Review. Japanese.
  • [Global spread of Zika virus epidemic: current knowledges and uncertainties].
    Şahiner F. Şahiner F. Mikrobiyol Bul. 2016 Apr;50(2):333-51. doi: 10.5578/mb.24167. Mikrobiyol Bul. 2016. PMID: 27175508 Review. Turkish.
  • Zika virus in the Americas: Early epidemiological and genetic findings.
    Faria NR, Azevedo RDSDS, Kraemer MUG, Souza R, Cunha MS, Hill SC, Thézé J, Bonsall MB, Bowden TA, Rissanen I, Rocco IM, Nogueira JS, Maeda AY, Vasami FGDS, Macedo FLL, Suzuki A, Rodrigues SG, Cruz ACR, Nunes BT, Medeiros DBA, Rodrigues DSG, Queiroz ALN, da Silva EVP, Henriques DF, da Rosa EST, de Oliveira CS, Martins LC, Vasconcelos HB, Casseb LMN, Simith DB, Messina JP, Abade L, Lourenço J, Alcantara LCJ, de Lima MM, Giovanetti M, Hay SI, de Oliveira RS, Lemos PDS, de Oliveira LF, de Lima CPS, da Silva SP, de Vasconcelos JM, Franco L, Cardoso JF, Vianez-Júnior JLDSG, Mir D, Bello G, Delatorre E, Khan K, Creatore M, Coelho GE, de Oliveira WK, Tesh R, Pybus OG, Nunes MRT, Vasconcelos PFC. Faria NR, et al. Science. 2016 Apr 15;352(6283):345-349. doi: 10.1126/science.aaf5036. Epub 2016 Mar 24. Science. 2016. PMID: 27013429 Free PMC article.

Cited by

References

    1. Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509–520. doi: 10.1016/0035-9203(52)90042-4. http://www.ncbi.nlm.nih.gov/pubmed/12995440 Available at: - DOI - PubMed
    1. Macnamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg. 1954;48:139–145. doi: 10.1016/0035-9203(54)90006-1. http://www.ncbi.nlm.nih.gov/pubmed/13157159 Available at: - DOI - PubMed
    1. Haddow AJ, Williams MC, Woodall JP, Simpson DI, Goma LK. Twelve isolations of Zika virus from Aedes (Stegomyia) Africanus (Theobald) taken in and above a Uganda forest. Bull World Health Organ. 1964;31:57–69. - PMC - PubMed
    1. Marchette NJ, Garcia R, Rudnick A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg. 1969;18:411–415. http://www.ncbi.nlm.nih.gov/pubmed/4976739 Available at: - PubMed
    1. Geser A, Henderson BE, Christensen S. A multipurpose serological survey in Kenya. 2. Results of arbovirus serological tests. Bull World Health Organ. 1970;43:539–552. http://www.ncbi.nlm.nih.gov/pubmed/5313066 Available at: - PMC - PubMed

Publication types