Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun 16;127(24):3094-8.
doi: 10.1182/blood-2016-04-709899. Epub 2016 May 3.

CSF3R mutations have a high degree of overlap with CEBPA mutations in pediatric AML

Affiliations

CSF3R mutations have a high degree of overlap with CEBPA mutations in pediatric AML

Julia E Maxson et al. Blood. .

Erratum in

Abstract

Publisher's Note: There is an Inside Blood Commentary on this article in this issue.

PubMed Disclaimer

Figures

Figure 1
Figure 1
CSF3R mutations co-occur with CEBPA mutations in pediatric AML. (A) Schematic showing the locations of CSF3R mutations found in pediatric AML. One patient had both the T618I and T615A mutations. (B) The percentage of cytogenetic abnormalities (obtained from clinical data) or gene mutations for patients with transforming CSF3R mutations (gray) or CSF3R non-mutated cases (red) are shown. (C) Transforming CSF3R mutation overlap with other gene mutations. The most frequent genomic alterations are shown by OncoPrint analysis. Each column represents a case with a transforming CSF3R mutation. Mutations are represented by a gray square. Some 74% of these cases have either a CBF rearrangement or CEBPA mutation, and there is very minimal overlap between CBF and CEBPA. Custom OncoPrints were generated using the OncoPrinter function of the cBioPortal website (www.cbioportal.org). FNIII, fibronectin type III; IDH2, isocitrate dehydrogenase 2; IgG, immunoglobulin G; KIT, KIT proto-oncogene receptor tyrosine kinase; WT, wild-type.

Comment in

References

    1. Schuback HL, Arceci RJ, Meshinchi S. Somatic characterization of pediatric acute myeloid leukemia using next-generation sequencing. Semin Hematol. 2013;50(4):325–332. - PubMed
    1. Lieschke GJ, Grail D, Hodgson G, et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood. 1994;84(6):1737–1746. - PubMed
    1. Nicholson SE, Oates AC, Harpur AG, Ziemiecki A, Wilks AF, Layton JE. Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation. Proc Natl Acad Sci USA. 1994;91(8):2985–2988. - PMC - PubMed
    1. Tian SS, Lamb P, Seidel HM, Stein RB, Rosen J. Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood. 1994;84(6):1760–1764. - PubMed
    1. Corey SJ, Burkhardt AL, Bolen JB, Geahlen RL, Tkatch LS, Tweardy DJ. Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases. Proc Natl Acad Sci USA. 1994;91(11):4683–4687. - PMC - PubMed

Publication types

Substances