Airway Progenitor Clone Formation Is Enhanced by Y-27632-Dependent Changes in the Transcriptome
- PMID: 27144410
- PMCID: PMC5023026
- DOI: 10.1165/rcmb.2015-0274MA
Airway Progenitor Clone Formation Is Enhanced by Y-27632-Dependent Changes in the Transcriptome
Abstract
The application of conditional reprogramming culture (CRC) methods to nasal airway epithelial cells would allow more wide-spread incorporation of primary airway epithelial culture models into complex lung disease research. In this study, we adapted the CRC method to nasal airway epithelial cells, investigated the growth advantages afforded by this technique over standard culture methods, and determined the cellular and molecular basis of CRC cell culture effects. We found that the CRC method allowed the production of 7.1 × 10(10) cells after 4 passages, approximately 379 times more cells than were generated by the standard bronchial epithelial growth media (BEGM) method. These nasal airway epithelial cells expressed normal basal cell markers and could be induced to form a mucociliary epithelium. Progenitor cell frequency was significantly higher using the CRC method in comparison to the standard culture method, and progenitor cell maintenance was dependent on addition of the Rho-kinase inhibitor Y-27632. Whole-transcriptome sequencing analysis demonstrated widespread gene expression changes in Y-27632-treated basal cells. We found that Y-27632 treatment altered expression of genes fundamental to the formation of the basal cell cytoskeleton, cell-cell junctions, and cell-extracellular matrix (ECM) interactions. Importantly, we found that Y-27632 treatment up-regulated expression of unique basal cell intermediate filament and desmosomal genes. Conversely, Y-27632 down-regulated multiple families of protease/antiprotease genes involved in ECM remodeling. We conclude that Y-27632 fundamentally alters cell-cell and cell-ECM interactions, which preserves basal progenitor cells and allows greater cell amplification.
Keywords: Y-27632; airway stem progenitor; clone-forming cell frequency; conditionally reprogrammed cells.
Figures






References
-
- Fields WR, Desiderio JG, Putnam KP, Bombick DW, Doolittle DJ. Quantification of changes in c-myc mRNA levels in normal human bronchial epithelial (NHBE) and lung adenocarcinoma (A549) cells following chemical treatment. Toxicol Sci. 2001;63:107–114. - PubMed
-
- Karp PH, Moninger TO, Weber SP, Nesselhauf TS, Launspach JL, Zabner J, Welsh MJ. An in vitro model of differentiated human airway epithelia: methods for establishing primary cultures. Methods Mol Biol. 2002;188:115–137. - PubMed
-
- Fulcher ML, Gabriel S, Burns KA, Yankaskas JR, Randell SH. Well-differentiated human airway epithelial cell cultures. Methods Mol Med. 2005;107:183–206. - PubMed
-
- Wu R. Culture of normal human airway epithelial cells and measurement of mucin synthesis and secretion. Methods Mol Med. 2000;44:31–39. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases