Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Nov;24(9):787-796.
doi: 10.1080/1061186X.2016.1186169. Epub 2016 May 22.

PRCosomes: pretty reactive complexes formed in liposomes

Affiliations
Review

PRCosomes: pretty reactive complexes formed in liposomes

Mohamed Wehbe et al. J Drug Target. 2016 Nov.

Abstract

As a tribute to Pieter R. Cullis, this manuscript identifies a liposomal formulation that bears his initials: the PRCosomes. "Pretty" Reactive Complexes within liposomes were observed, while the senior author of this manuscript completed his Ph.D. thesis under Pieter's supervision. The dye (safranine) was used as a tool to measure the magnitude of the transmembrane gradient generated with liposomes. The dye's redistribution is easily detected by eye and correlates with >98% encapsulation of the dye. This observation became the basis from which remote drug loading methods developed. Remote loading methodology involves the addition of drugs to pre-formed liposomes with a transmembrane gradient, which results in drug redistribution to the liposome interior. Doxorubicin, as an example drug candidate, complexes manganese trapped within the liposome. A color change accompanied drug encapsulation as the solution went from an orange to purple. This manuscript reviews and adds a novel perspective on the use of metal complexation reactions to prepare PRCosomes. The technology described provides a versatile method to form metal-drug complexed within liposomes. The purpose of this work is to differentiation between drug candidate loading that is caused by metal-drug complexation and loading driven by formation of a pH gradient.

Keywords: Copper; drug loading; liposome; manganese; metal-complexation; pH gradient.

PubMed Disclaimer

Publication types

LinkOut - more resources