Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Oct;20(10):1247-57.
doi: 10.1080/14728222.2016.1186650. Epub 2016 May 25.

Intraplaque neovascularization as a novel therapeutic target in advanced atherosclerosis

Affiliations
Review

Intraplaque neovascularization as a novel therapeutic target in advanced atherosclerosis

Bieke Van der Veken et al. Expert Opin Ther Targets. 2016 Oct.

Abstract

Introduction: Atherosclerosis is a lipid-driven inflammatory process with a tremendously high mortality due to acute cardiac events. There is an emerging need for new therapies to stabilize atherosclerotic lesions. Growing evidence suggests that intraplaque (IP) neovascularisation and IP hemorrhages are important contributors to plaque instability.

Areas covered: Neovascularization is a complex process that involves different growth factors and inflammatory mediators of which their individual significance in atherosclerosis remains poorly understood. This review discusses different aspects of IP neovascularization in atherosclerosis including the potential treatment opportunities to stabilize advanced plaques. Furthermore, we highlight the development of accurate and feasible in vivo imaging modalities for IP neovascularization to prevent acute events.

Expert opinion: Although lack of a valuable animal model of IP neovascularization impeded the investigation of a causal and straightforward link between neovascularization and atherosclerosis, recent evidence shows that vein grafts in ApoE*3 Leiden mice as well as plaques in ApoE(-/-) Fbn1(C1039G+/-) mice are useful models for intraplaque neovessel research. Even though interference with vascular endothelial growth factor (VEGF) signalling has been widely investigated, new therapeutic opportunities have emerged. Cell metabolism, in particular glycolysis and fatty acid oxidation, appears to perform a crucial role in the development of IP neovessels and thereby serves as a promising target.

Keywords: Atherosclerosis; VEGF; animal model; cell metabolism; imaging; neoangiogenesis; neovascularization.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources