High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms
- PMID: 27150975
- PMCID: PMC4972637
- DOI: 10.1016/j.chemphyslip.2016.04.007
High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms
Abstract
Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP.
Keywords: ApoA-I; Hdl; Ischemia-reperfusion; Mitochondrion; Myocardium; Sphingosine 1-Phosphate.
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Figures

Similar articles
-
Sphingosine 1-Phosphate Postconditioning Protects Against Myocardial Ischemia/reperfusion Injury in Rats via Mitochondrial Signaling and Akt-Gsk3β Phosphorylation.Arch Med Res. 2017 Feb;48(2):147-155. doi: 10.1016/j.arcmed.2017.03.013. Arch Med Res. 2017. PMID: 28625317
-
High-Density Lipoprotein Regulation of Mitochondrial Function.Adv Exp Med Biol. 2017;982:407-429. doi: 10.1007/978-3-319-55330-6_22. Adv Exp Med Biol. 2017. PMID: 28551800 Free PMC article. Review.
-
HDL protects against ischemia reperfusion injury by preserving mitochondrial integrity.Atherosclerosis. 2013 May;228(1):110-6. doi: 10.1016/j.atherosclerosis.2013.02.003. Epub 2013 Feb 19. Atherosclerosis. 2013. PMID: 23497785
-
The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore.Aging Cell. 2017 Oct;16(5):943-955. doi: 10.1111/acel.12650. Epub 2017 Jul 31. Aging Cell. 2017. PMID: 28758328 Free PMC article. Review.
-
Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species.World J Cardiol. 2011 Jun 26;3(6):186-200. doi: 10.4330/wjc.v3.i6.186. World J Cardiol. 2011. PMID: 21772945 Free PMC article.
Cited by
-
Downregulation of miR-3568 Protects Against Ischemia/Reperfusion-Induced Cardiac Dysfunction in Rats and Apoptosis in H9C2 Cardiomyocytes Through Targeting TRIM62.Front Pharmacol. 2020 Feb 13;11:17. doi: 10.3389/fphar.2020.00017. eCollection 2020. Front Pharmacol. 2020. PMID: 32116696 Free PMC article.
-
Apolipoprotein A-I priming via SR-BI and ABCA1 receptor binding upregulates mitochondrial metabolism to promote insulin secretion in INS-1E cells.PLoS One. 2024 Nov 15;19(11):e0311039. doi: 10.1371/journal.pone.0311039. eCollection 2024. PLoS One. 2024. PMID: 39546458 Free PMC article.
-
Inactivated pseudomonas aeruginosa protects against myocardial ischemia reperfusion injury via Nrf2 and HO-1.Exp Ther Med. 2020 May;19(5):3362-3368. doi: 10.3892/etm.2020.8605. Epub 2020 Mar 17. Exp Ther Med. 2020. PMID: 32266034 Free PMC article.
-
Therapeutic efficacy of cyclosporin A against spinal cord injury in rats with hyperglycemia.Mol Med Rep. 2018 Mar;17(3):4369-4375. doi: 10.3892/mmr.2018.8422. Epub 2018 Jan 11. Mol Med Rep. 2018. PMID: 29328412 Free PMC article.
-
High-Density Lipoproteins at the Interface between the NLRP3 Inflammasome and Myocardial Infarction.Int J Mol Sci. 2024 Jan 20;25(2):1290. doi: 10.3390/ijms25021290. Int J Mol Sci. 2024. PMID: 38279290 Free PMC article. Review.
References
-
- Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96:1221–1232. - PubMed
-
- Fazio S, Linton MF. Sorting out the complexities of reverse cholesterol transport: CETP polymorphisms, HDL, and coronary disease. J Clin Endocrinol Metab. 2006;91:3273–3275. - PubMed
-
- Ansell BJ, Watson KE, Fogelman AM, Navab M, Fonarow GC. High-density lipoprotein function: recent advances. J Am Coll Cardiol. 2005;46:1792–1798. - PubMed
-
- Assmann G, Nofer JR. Atheroprotective effects of high-density lipoproteins. Annu Rev Med. 2003;54:321–341. - PubMed
-
- Dunbar RL, Rader DJ. Current drug options for raising HDL cholesterol. Curr Treat Options Cardiovasc Med. 2005;7:15–23. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources