Mechanism and Reactivity of Rh-Catalyzed Intermolecular [5+1] Cycloaddition of 3-Acyloxy-1,4-Enyne (ACE) and CO: A Computational Study
- PMID: 27152064
- PMCID: PMC4852877
- DOI: 10.1016/j.cclet.2015.03.016
Mechanism and Reactivity of Rh-Catalyzed Intermolecular [5+1] Cycloaddition of 3-Acyloxy-1,4-Enyne (ACE) and CO: A Computational Study
Abstract
The first theoretical study on the mechanism of [RhCl(CO)2]2-catalyzed [5 + 1] cycloadditions of 3-acyloxy-1,4-enyne (ACE) and CO has been performed using density functional theory (DFT) calculations. The effect of ester on reactivity of this reaction has been investigated. The computational results have revealed that the preferred catalytic cycle involves the sequential steps of 1,2-acyloxy migration, CO insertion, reductive elimination to form ketene intermediate, 6π-electroncyclization, and aromatization to afford the resorcinol product. The 1,2-acyloxy migration is found to be the rate-determining step of the catalytic cycle. The electron-rich p-dimethylaminobenzoate substrate promotes 1,2-acyloxy migration and significantly increases the reactivity by stabilizing the positive charge building up in the oxocyclic transition state.
Keywords: (5+1) Cycloaddition; DFT; Ester effect; Rhodium catalyst.
Figures




Similar articles
-
Rh-catalyzed (5+2) cycloadditions of 3-acyloxy-1,4-enynes and alkynes: computational study of mechanism, reactivity, and regioselectivity.J Am Chem Soc. 2013 Jun 26;135(25):9271-4. doi: 10.1021/ja4036785. Epub 2013 Jun 14. J Am Chem Soc. 2013. PMID: 23725341 Free PMC article.
-
Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks.Acc Chem Res. 2020 Jan 21;53(1):231-243. doi: 10.1021/acs.accounts.9b00477. Epub 2019 Dec 10. Acc Chem Res. 2020. PMID: 31820914 Free PMC article. Review.
-
3-Acyloxy-1,4-enyne: a New Five-carbon Synthon for Rhodium-Catalyzed (5+2) Cycloadditions.Pure Appl Chem. 2014 Mar 1;86(3):409-417. doi: 10.1515/pac-2014-5042. Pure Appl Chem. 2014. PMID: 24839310 Free PMC article.
-
Computational Study of Iron-Catalyzed Intramolecular [2 + 2] Cycloaddition and Cycloisomerization of Enyne Acetates: Mechanism and Selectivity.J Org Chem. 2023 Jan 20;88(2):944-951. doi: 10.1021/acs.joc.2c02335. Epub 2023 Jan 5. J Org Chem. 2023. PMID: 36602522
-
Rhodium-catalyzed acyloxy migration of propargylic esters in cycloadditions, inspiration from the recent "gold rush".Chem Soc Rev. 2012 Dec 7;41(23):7698-711. doi: 10.1039/c2cs35235d. Chem Soc Rev. 2012. PMID: 22895533 Free PMC article. Review.
Cited by
-
Rhodium(I)-Catalyzed Benzannulation of Heteroaryl Propargylic Esters: Synthesis of Indoles and Related Heterocycles.Chemistry. 2016 Jul 18;22(30):10410-4. doi: 10.1002/chem.201602088. Epub 2016 Jun 20. Chemistry. 2016. PMID: 27189811 Free PMC article.
References
-
-
For selected examples, see: Lautens M, Klute W, Tam W. Transition Metal-Mediated Cycloaddition Reactions. Chem. Rev. 1996;96:49. Fruhauf HW. Metal-Assisted Cycloaddition Reactions in Organotransition Metal Chemistry. Chem. Rev. 1997;97:523–596. Trost BM, Krische MJ. Transition Metal Catalyzed Cycloisomerizations. Synlett. 1998:1–16. Aubert C, Buisine O, Malacria M. The Behavior of 1,n-Enynes in the Presence of Transition Metals. Chem. Rev. 2002;102:813–834. Evans PA. Modern Rhodium-Catalyzed Organic Reactions. Weinheim: Wiley-VCH; 2005. Michelet V, Toullec PY, Genet JP. Cycloisomerization of 1,n-Enynes: Challenging Metal-Catalyzed Rearrangements and Mechanistic Insights. Angew. Chem. Int. Ed. 2008;47:4268–4315. Yu Z-X, Wang Y, Wang Y. Transition-Metal-Catalyzed Cycloadditions for the Synthesis of Eight-Membered Carbocycles. Chem. Asian J. 2010;5:1072–1088. Inglesby PA, Evans PA. Stereoselective Ttransition Metal-Catalysed Higher-Order Carbocyclisation Reactions. Chem. Soc. Rev. 2010;39:2791–2805. Chen Z, Han X, Liang J-H, Yin J, Yu G-A, Liu S-H. Cycloaddition reactions of benzyne with olefins. Chin. Chem. Lett. 2014;25:1535–1539. Mehrabi H, Hatami-Pour M. Facile, one-pot synthesis of new phenanthridine derivatives hrough 1,4-dipolar cycloaddition of phenantridine, activated acetylenes, and aromatic aldehydes. Chin. Chem. Lett. 2014;25:1495–1498.
-
-
- Huang Y, Lu X. Palladium Catalyzed Annulation Reaction Using a Bifunctional Allylic Alkylating Agent. Tetrahedron Lett. 1988;29:5663–5664.
- He X-C, Wang B, Bai BD. Studies on Asymmetric Synthesis of Hhuperzine A - 1. Palladium-Catalyzed Asymmetric Bicycloannulation of 5,6,7,8-Tetrahydro-2-Methoxy-6-oxo-5-Quinolinecarboxylic Esters. Tetrahedron Lett. 1998;39:411–414.
-
-
(a) ref ; Carruthers W. Cycloaddition Reactions in Organic Synthesis. Oxford: Pergamon; 1990. For selected examples, see: Wender PA, Jenkins TE, Suzuki S. Transition Metal-Catalyzed Intramolecular [4 + 2] Diene-Allene Cycloadditions: A Convenient Synthesis of Angularly Substituted Ring Systems with Provision for Catalyst-Controlled Chemo- and Stereocomplementarity. J. Am. Chem. Soc. 1995;117:1843–1844. O’Mahony DJR, Belanger DB, Livinghouse T. Substrate Control of Stereoselection in the Rhodium(I) Catalyzed Intramolecular [4 + 2] Cycloaddition Reaction. Org. Biomol. Chem. 2003;1:2038–2040. Aikawa K, Akutagawa S, Mikami K. Asymmetric Synergy between Chiral Dienes and Diphosphines in Cationic Rh(I)-Catalyzed Intramolecular [4 + 2] Cycloaddition. J. Am. Chem. Soc. 2006;128:12648–12649. Fürstner A, Stimson CC. Angew. Two Manifolds for Metal-Catalyzed Intramolecular Diels-Alder Reactions of Unactivated Alkynes. Chem. Int. Ed. 2007;46:8845–8849. Kusama H, Karibe Y, Onizawa Y, Iwasawa N. Gold-Catalyzed Tandem Cyclization of Dienol Silyl Ethers for the Preparation of Bicyclo[4.3.0]nonane Derivatives. Angew. Chem. Int. Ed. 2010;49:4269–4272. Kim SM, Park JH, Chung YK. Ah3)OPOF2-Catalyzed Intramolecular [4+2] Cycloaddition Reaction of Dienynes. Chem. Commun. 2011;47:6719–6721.
-
-
-
[5 + 1] cycloadditions of vinylcyclopropanes: Aumann R. Reactions of Strained Carbon-Carbon Bonds with Transition Metals. 7. Iron Carbonyl Complexes from Vinylcyclopropane. J. Am. Chem. Soc. 1974;96:2631–2632. Taber DF, Kanai K, Jiang Q, Bui G. Enantiomerically Pure Cyclohexenones by Fe-Mediated Carbonylation of Alkenyl Cyclopropanes. J. Am. Chem. Soc. 2000;122:6807–6808. Taber DF, Joshi PV, Kanai K. 2,5-Dialkyl Cyclohexenones by Fe(CO)5-Mediated Carbonylation of Alkenyl Cyclopropanes: Functional Group Compatibility. J. Org. Chem. 2004;69:2268–2271. Kurahashi T, deMeijere A. Cyclopropyl Building Blocks for Organic Synthesis, part 120. [5+1] Cocyclization of Cyclopropylmethylene)Cyclopropanes and other Vinyl-Cyclopropanes with Carbon Monoxide Catalyzed by Octacarbonyldicobalt. Synlett. 2005:2619–2622.
-
-
-
Rh-catalyzed [5 + 1] steps are also involved in the following reactions of dienylcyclopropanes and 1-yne-vinylcyclopropanes: Wender PA, Gamber GG, Hubbard RD, Pham SM, Zhang L. Multicomponent Cycloadditions: The Four-Component [5+1+2+1] Cycloaddition of Vinylcyclopropanes, Alkynes, and CO. J. Am. Chem. Soc. 2005;127:2836–2837. Yao Z-K, Li J, Yu Z-X. Rh-Catalyzed [7 + 1] Cycloaddition of Buta-1,3-Dienylcyclopropanes and CO for the Synthesis of Cyclooctadienones. Org. Lett. 2011;13:134–137. Lin M, Li F, Jiao L, Yu Z-X. Rh(I)-Catalyzed Formal [5 + 1]/[2 + 2 + 1] Cycloaddition of 1-Yne-vinylcyclopropanes and Two CO Units: One-Step Construction of Multifunctional Angular Tricyclic 5/5/6 Compounds. J. Am. Chem. Soc. 2011;133:1690–1693.
-
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous