The cell biology of CNS myelination
- PMID: 27152449
- PMCID: PMC4987163
- DOI: 10.1016/j.conb.2016.04.013
The cell biology of CNS myelination
Abstract
Myelination of axons in the central nervous system results from the remarkable ability of oligodendrocytes to wrap multiple axons with highly specialized membrane. Because myelin membrane grows as it ensheaths axons, cytoskeletal rearrangements that enable ensheathment must be coordinated with myelin production. Because the myelin sheaths of a single oligodendrocyte can differ in thickness and length, mechanisms that coordinate axon ensheathment with myelin growth likely operate within individual oligodendrocyte processes. Recent studies have revealed new information about how assembly and disassembly of actin filaments helps drive the leading edge of nascent myelin membrane around and along axons. Concurrently, other investigations have begun to uncover evidence of communication between axons and oligodendrocytes that can regulate myelin formation.
Copyright © 2016 Elsevier Ltd. All rights reserved.
Figures
References
-
- Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci. 2006;9:1506–1511. - PubMed
-
- Yeung MSY, Zdunek S, Bergmann O, Bernard S, Salehpour M, Alkass K, Perl S, Tisdale J, Possnert G, Brundin L, et al. Dynamics of Oligodendrocyte Generation and Myelination in the Human Brain. Cell. 2014;159:766–774. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
