Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 24;10(5):5051-62.
doi: 10.1021/acsnano.5b07787. Epub 2016 May 12.

Bicontinuous Fluid Structure with Low Cohesive Energy: Molecular Basis for Exceptionally Low Interfacial Tension of Complex Coacervate Fluids

Affiliations

Bicontinuous Fluid Structure with Low Cohesive Energy: Molecular Basis for Exceptionally Low Interfacial Tension of Complex Coacervate Fluids

Kuo-Ying Huang et al. ACS Nano. .

Abstract

An exceptionally low interfacial tension of a dense fluid of concentrated polyelectrolyte complexes, phase-separated from a biphasic fluid known as complex coacervates, represents a unique and highly sought-after materials property that inspires novel applications from superior coating to wet adhesion. Despite extensive studies and broad interest, the molecular and structural bases for the unique properties of complex coacervates are unclear. Here, a microphase-separated complex coacervate fluid generated by mixing a recombinant mussel foot protein-1 (mfp-1) as the polycation and hyaluronic acid (HA) as the polyanion at stoichiometric ratios was macroscopically phase-separated into a dense complex coacervate and a dilute supernatant phase to enable separate characterization of the two fluid phases. Surprisingly, despite up to 4 orders of magnitude differing density of the polyelectrolytes, the diffusivity of water in these two phases was found to be indistinguishable. The presence of unbound, bulk-like, water in the dense fluid can be reconciled with a water population that is only weakly perturbed by the polyelectrolyte interface and network. This hypothesis was experimentally validated by cryo-TEM of the macroscopically phase-separated dense complex coacervate phase that was found to be a bicontinuous and biphasic nanostructured network, in which one of the phases was confirmed by staining techniques to be water and the other polyelectrolyte complexes. We conclude that a weak cohesive energy between water-water and water-polyelectrolytes manifests itself in a bicontinuous network, and is responsible for the exceptionally low interfacial energy of this complex fluid phase with respect to virtually any surface within an aqueous medium.

Keywords: Overhauser effect dynamic nuclear polarization; complex coacervate; cryo-transmission electron microscopy; hydration water; interfacial energy; polyelectrolyte complexes; water dynamics.

PubMed Disclaimer

Publication types