Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 22:430:8-15.
doi: 10.1016/j.carres.2016.03.025. Epub 2016 Apr 6.

Automated fluorous-assisted solution-phase synthesis of β-1,2-, 1,3-, and 1,6-mannan oligomers

Affiliations

Automated fluorous-assisted solution-phase synthesis of β-1,2-, 1,3-, and 1,6-mannan oligomers

Shu-Lun Tang et al. Carbohydr Res. .

Abstract

Automated solution-phase syntheses of β-1,2-, 1,3-, and 1,6-mannan oligomers have been accomplished by applying a β-directing C-5 carboxylate strategy. Fluorous-tag-assisted purification after each reaction cycle allowed the synthesis of short β-mannan oligomers with limited loading of glycosyl donor-as low as 3.0 equivalents for each glycosylation cycle. This study showed the capability of the automated solution-phase synthesis protocol for synthesizing various challenging glycosides, including use of a C-5 ester as a protecting group that could be converted under reductive conditions to a hydroxymethyl group for chain extension.

Keywords: Automated oligosaccharide synthesis; Fluorous-assisted synthesis; β-Mannan; β-Mannuronate.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Synthesis of building block 6 for the automated solution–phase synthesis of β-1,2-mannan.
Scheme 2
Scheme 2
Automated solution–phase synthesis of β-1,2-mannan 10.
Scheme 3
Scheme 3
Automated solution–phase synthesis of β-1,3-mannan 15.
Scheme 4
Scheme 4
Synthesis of the trichloroacetimidate building block 17 and automated solution-phase synthesis of β-1,6-mannan 20.

References

    1. Schmaltz RM, Hanson SR, Wong CH. Chem Rev. 2011;111:4259–4307. - PubMed
    2. Crich D, Banerjee A, Yao Q. J Am Chem Soc. 2004;126:14930–14934. - PubMed
    3. Wu X, Bundle DR. J Org Chem. 2005;70:7381–7388. - PubMed
    4. Walters KR, Jr, Serianni AS, Sformo T, Barnes BM, Duman JG. Proc Natl Acad Sci, USA. 2009;106:20210–20215. - PMC - PubMed
    5. Ishiwata A, Sakurai A, Nishimiya Y, Tsuda S, Ito Y. J Am Chem Soc. 2011;133:19524–19535. - PubMed
    6. Crich D, Rahaman MY. J Org Chem. 2011;76:8611–8620. - PMC - PubMed
    1. Iwamoto M, Kurachi M, Nakashima T, Kim D, Yamaguchi K, Oda T, Iwamoto Y, Muramatsu T. FEBS lett. 2005;579:4423–4429. - PubMed
    2. Janeway CA, Jr, Medzhitov R. Annu Rev Immunol. 2002;20:197–216. - PubMed
    1. Heuckendorff M, Bendix J, Pedersen CM, Bols M. Org Lett. 2014;16:1116–1119. - PubMed
    2. Baek JY, Lee BY, Jo MG, Kim KS. J Am Chem Soc. 2009;131:17705–17713. - PubMed
    3. Stork G, La Clair JJ. J Am Chem Soc. 1996;118:247–248.
    4. Wu X, Bundle DR. J Org Chem. 2005;70:7381–7388. - PubMed
    1. Codee JDC, Kroeck L, Castagner B, Seeberger PH. Chem—Eur J. 2008;14:3987–3994. - PubMed
    2. Walvoort MTC, van den Elst H, Plante OJ, Kröck L, Seeberger PH, Overkleeft HS, van der Marel GA, Codée JDC. Angew Chem Int Ed. 2012;51:4393–4396. - PubMed
    3. Dallabernardina P, Schuhmacher F, Seeberger PH, Pfrengle F. Org Biomol Chem. 2016;14:309–313. - PubMed
    1. Pohl NL. ACS Symp Ser. 2008;990:272–287.
    2. Tang SL, Pohl NLB. Org Lett. 2015;17:2642–2645. - PMC - PubMed
    3. Tang SL, Linz LB, Bonning BC, Pohl NLB. J Org Chem. 2015;80:10482–10489. - PMC - PubMed