Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 May 1;8(1):e2016025.
doi: 10.4084/MJHID.2016.025. eCollection 2016.

The Gut Microbiota and Immune System Relationship in Human Graft-versus-Host Disease

Affiliations
Review

The Gut Microbiota and Immune System Relationship in Human Graft-versus-Host Disease

Lucrezia Laterza et al. Mediterr J Hematol Infect Dis. .

Abstract

Gut microbiota has gained increasing interest in the pathogenesis of immune-related diseases. In this context, graft-versus-host disease is a condition characterized by an immune response which frequently complicates and limits the outcomes of hematopoietic stem cell transplantations. Past studies, carried mostly in animals, already supported a relationship between gut microbiota and graft-versus-host disease. However, the possible mechanisms underlying this connection remain elusory. Moreover, strategies to prevent graft-versus-host disease are of great interest as well as the potential role of gut microbiota modulation. We reviewed the role of gut microbiota in the development of immune system and its involvement in the graft-versus-host disease, focusing on data available on humans.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The gut barrier and its alterations during the pathogenesis of GVHD. The healthy gut barrier is essential to maintain the immune homeostasis. Total body irradiation and/or chemotherapy, used as conditioning regimen, lead to gut barrier disruption, damaging the mucus layer and the epithelium. Thus, bacteria and bacterial products such as lipopolysaccharide translocate in the lamina propria where, together with endogenous danger molecules released from damaged epithelial cells, activate host and/or donor antigen-presenting cells (APCs) which prime alloreactive donor-derived T cells, triggering the damage to target organs. Modified from Heidegger.

References

    1. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–339. doi: 10.1136/gutjnl-2015-309990. - DOI - PMC - PubMed
    1. Pasquini MC. Impact of graft-versus-host disease on survival. Best practice & research Clinical haematology. 2008;21:193–204. doi: 10.1016/j.beha.2008.02.011. - DOI - PubMed
    1. Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and therapy. Nature reviews Immunology. 2012;12:443–458. doi: 10.1038/nri3212. - DOI - PMC - PubMed
    1. Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ, Martin P, Chien J, Przepiorka D, Couriel D, Cowen EW, Dinndorf P, Farrell A, Hartzman R, Henslee-Downey J, Jacobsohn D, McDonald G, Mittleman B, Rizzo JD, Robinson M, Schubert M, Schultz K, Shulman H, Turner M, Vogelsang G, Flowers ME. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2005;11:945–956. doi: 10.1016/j.bbmt.2005.09.004. - DOI - PubMed
    1. Rajilic-Stojanovic M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS microbiology reviews. 2014;38:996–1047. doi: 10.1111/1574-6976.12075. - DOI - PMC - PubMed