Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging
- PMID: 27158637
- PMCID: PMC4841798
- DOI: 10.1063/1.4947098
Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging
Abstract
Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM) in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs) combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics.
Figures








References
-
- Pellegrini C., Marinelli A., and Reiche S., “ The physics of x-ray free-electron lasers,” Rev. Mod. Phys. 88, 015006 (2016).10.1103/RevModPhys.88.015006 - DOI
-
- Tenboer J., Basu S., Zatsepin N., Pande K., Milathianaki D., Frank M., Hunter M., Boutet S., Williams G. J., Koglin J. E., Oberthuer D., Heymann M., Kupitz C., Conrad C., Coe J., Roy-Chowdhury S., Weierstall U., James D., Wang D., Grant T., Barty A., Yefanov O., Scales J., Gati C., Seuring C., Srajer V., Henning R., Schwander P., Fromme R., Ourmazd A., Moffat K., Van Thor J. J., Spence J. C. H., Fromme P., Chapman H. N., and Schmidt M., “ Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein,” Science 346, 1242–1246 (2014).10.1126/science.1259357 - DOI - PMC - PubMed
-
- Clark J. N., Beitra L., Xiong G., Higginbotham A., Fritz D. M., Lemke H. T., Zhu D., Chollet M., Williams G. J., Messerschmidt M., Abbey B., Harder R. J., Korsunsky A. M., Wark J. S., and Robinson I. K., “ Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals,” Science 341, 56–59 (2013).10.1126/science.1236034 - DOI - PubMed
-
- Moore R. G., Lee W. S., Kirchman P. S., Chuang Y. D., Kemper A. F., Trigo M., Patthey L., Lu D. H., Krupin O., Yi M., Reis D. A., Doering D., Denes P., Schlotter W. F., Turner J. J., Hays G., Hering P., Benson T., Chu J.-H., Devereaux T. P., Fisher I. R., Hussain Z., and Shen Z.-X., “ Ultrafast resonant soft x-ray diffraction dynamics of the charge density wave in tbte3,” Phys. Rev. B 93, 024304 (2016).10.1103/PhysRevB.93.024304 - DOI
-
- Ruska E., “ The development of the electron microscope and of electron microscopy,” in Nobel Lecture, 1986. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous