Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 25;138(20):6629-35.
doi: 10.1021/jacs.6b03161. Epub 2016 May 17.

Highly Ligand-Controlled Regioselective Pd-Catalyzed Aminocarbonylation of Styrenes with Aminophenols

Affiliations

Highly Ligand-Controlled Regioselective Pd-Catalyzed Aminocarbonylation of Styrenes with Aminophenols

Tongyu Xu et al. J Am Chem Soc. .

Abstract

Achieving chemo- and regioselectivity simultaneously is challenging in organic synthesis. Transition metal-catalyzed reactions are effective in addressing this problem by the diverse ligand effect on the catalyst center. Ligand-controlled regioselective Pd-catalyzed carbonylation of styrenes with aminophenols was realized, chemoselectively affording amides. Using a combination of boronic acid and 5-chlorosalicylic acid as the additives, linear amides were obtained in high yields and selectivity using tris(4-methoxyphenyl)phosphine (L3) in acetonitrile, while branched amides were obtained in high yields and selectivity in butanone by changing the ligand to 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phenyl-6-phosphaadamantane (L5). Further studies show that the nature of the ligand is key to the regioselectivity. Cone angle and Tolman electronic parameter (TEP) have been correlated to the reactivity and regioselectivity. Studies on the acid additives show that different acids act as the proton source and the corresponding counterion can help enhance the reactivity and selectivity.

PubMed Disclaimer

Publication types

LinkOut - more resources