Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct;35(10):2292-2300.
doi: 10.1109/TMI.2016.2559499. Epub 2016 Apr 27.

Radiolucent 4D Ultrasound Imaging: System Design and Application to Radiotherapy Guidance

Radiolucent 4D Ultrasound Imaging: System Design and Application to Radiotherapy Guidance

Jeffrey Schlosser et al. IEEE Trans Med Imaging. 2016 Oct.

Abstract

Four-dimensional (4D) ultrasound (US) is an attractive modality for image guidance due to its real-time, non-ionizing, volumetric imaging capability with high soft tissue contrast. However, existing 4D US imaging systems contain large volumes of metal which interfere with diagnostic and therapeutic ionizing radiation in procedures such as CT imaging and radiation therapy. This study aimed to design and characterize a novel 4D Radiolucent Remotely-Actuated UltraSound Scanning (RRUSS) device that overcomes this limitation. In a phantom, we evaluated the imaging performance of the RRUSS device including frame rate, resolution, spatial integrity, and motion tracking accuracy. To evaluate compatibility with radiation therapy workflow, we evaluated device-induced CT imaging artifacts, US tracking performance during beam delivery, and device compatibility with commercial radiotherapy planning software. The RRUSS device produced 4D volumes at 0.1-3.0 Hz with 60° lateral field of view (FOV), 50° maximum elevational FOV, and 200 mm maximum depth. Imaging resolution (-3 dB point spread width) was 1.2-7.9 mm at depths up to 100 mm and motion tracking accuracy was ≤ 0.3±0.5 mm. No significant effect of the RRUSS device on CT image integrity was found, and RRUSS device performance was not affected by radiotherapy beam exposure. Agreement within ±3.0% / 2.0 mm was achieved between computed and measured radiotherapy dose delivered directly through the RRUSS device at 6 MV and 15 MV. In vivo liver, kidney, and prostate images were successfully acquired. Our investigations suggest that a RRUSS device can offer non-interfering 4D guidance for radiation therapy and other diagnostic and therapeutic procedures.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms