Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Abstract

Objective: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology.

Methods: We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes.

Results: We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families.

Conclusions: De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Domains of GRIN1 and distribution of variants
Signal peptide (SP), the extracellular N-terminal domain, and ligand binding sites (S1, S2), the transmembrane domains (M1-4), as well as the intracellular C-terminal domain (CTD) with the proximal Ca2+ calmodulin binding domain (CBD). De novo mutations (red) cluster within or in very close proximity to M1-4. In addition, this region is particularly spared from nonsynonymous genetic variation according to the ExAC browser (rare/single variants, gray; repeated/frequent variants, black). The 2 homozygous GRIN1 variants are marked in blue.

References

    1. Laube B, Kuhse J, Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 1998;18:2954–2961. - PMC - PubMed
    1. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013;14:383–400. - PubMed
    1. Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF. Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol Pharmacol 2015;88:203–217. - PMC - PubMed
    1. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010;11:682–696. - PMC - PubMed
    1. Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 2011;33:1351–1365. - PubMed

Publication types

MeSH terms

Substances