Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 10;15(1):267.
doi: 10.1186/s12936-016-1325-3.

Seroepidemiology of Plasmodium species infections in Zimbabwean population

Affiliations

Seroepidemiology of Plasmodium species infections in Zimbabwean population

Seth A Amanfo et al. Malar J. .

Abstract

Background: Individuals living in malaria-endemic regions may be exposed to more than one Plasmodium species; there is paucity of data on the distribution of the different species of Plasmodium in affected populations, in part due to the diagnostic method of microscopy, which cannot easily differentiate between the species. Sero-epidemiological data can overcome some of the shortcomings of microscopy.

Methods: The specificity of IgG antibodies to recombinant merozoite surface protein 1 (MSP-119) derived from four human Plasmodium species (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale) was investigated using competition enzyme-linked immunosorbent assay. Subsequently, these antigens were used to determine the exposure prevalence to the different Plasmodium species in serum samples of participants. One-hundred individuals, aged five-18 years, from each of the three Plasmodium meso-endemic Zimbabwean villages (Burma Valley, Mutoko, Chiredzi) were recruited in the study.

Results: The study demonstrated that the host serum reactivity to MSP-119 antigens was species-specific and that no cross-reactivity occurred. The overall prevalence of antibody response to MSP-119 antigens was 61 % in Burma Valley, 31 % in Mutoko and 32 % in Chiredzi. Single species IgG responses to MSP-119 were most frequent against P. falciparum, followed by P. malariae and P. ovale, with responses to P. vivax being the least prevalent. Interestingly, 78-87 and 50 % of sera with IgG responses to P. malariae and P. ovale MSP-119, respectively, also had IgG specific response for P. falciparum MSP-119 antigens, indicating that exposure to these species is a common occurrence in these populations. Single species IgG responses to the non-falciparum species were at a very low frequency, ranging between 0 and 13 % for P. malariae.

Conclusions: There is evidence of a higher exposure to the non-falciparum parasite species than previously reported in Zimbabwe. The recombinant MSP-119 antigens could be used as additional diagnostic tools in antibody assays for the detection of exposure to the different Plasmodium species. The results also introduce an interesting concept of the co-infection of non-falciparum Plasmodium almost always with P. falciparum, which requires further validation and mechanistic studies.

Keywords: Antibody; Merozoite surface protein 1 (MSP-119); Microscopy; Plasmodium.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Competition ELISA showing species specificity of Abs to recombinant Plasmodium MSP-119 antigens for individuals 1 and 2. Sera were tested at 1:500 dilution. Legends indicate the pairs of competing antigens used, with the well-bound capture antigen listed first and the competing homologous or heterologous antigen second. The capture antigens were coated at 50 ng/well. The x-axis indicates increasing concentrations of competing antigen added to the diluted sera
Fig. 2
Fig. 2
Prevalence of single Plasmodium falciparum vs multiple species anti-MSP-119 responses. Observed prevalence of single spp. P. falciparum anti-MSP-119 responses were compared with multiple responses involving P. falciparum with P. malariae and/or P. ovale in all three study sites

References

    1. WHO. World Malaria Report 2013. Geneva: World Health Organization; 2013.
    1. Zimmerman PA, Mehlotra RK, Kasehagen LJ, Kazura JW. Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol. 2004;20:440–447. doi: 10.1016/j.pt.2004.07.004. - DOI - PMC - PubMed
    1. Howes RE, Reiner RC, Jr, Battle KE, Longbottom J, Mappin B, Ordanovich D, et al. Plasmodium vivax transmission in Africa. PLoS Neglect Trop Dis. 2015;9:e0004222. doi: 10.1371/journal.pntd.0004222. - DOI - PMC - PubMed
    1. Mueller I, Zimmerman PA, Reeder JC. Plasmodiummalariae and Plasmodiumovale—the “bashful” malaria parasites. Trends Parasitol. 2007;23:278–283. doi: 10.1016/j.pt.2007.04.009. - DOI - PMC - PubMed
    1. Snounou G, White NJ. The co-existence of Plasmodium: sidelights from falciparum and vivax malaria in Thailand. Trends Parasitol. 2004;20:333–339. doi: 10.1016/j.pt.2004.05.004. - DOI - PubMed

Publication types