Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 11;12(5):e1005620.
doi: 10.1371/journal.ppat.1005620. eCollection 2016 May.

Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential

Affiliations

Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential

Justin Bahl et al. PLoS Pathog. .

Abstract

Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain enigmatic. In this study, we integrate ecosystem interactions into a phylogeographic model to assess the contribution of wild and domestic hosts to AIV distribution and persistence. Analysis of globally sampled AIV datasets shows frequent two-way transmission between wild and domestic ecosystems. In general, viral flow from domestic to wild bird populations was restricted to within a geographic region. In contrast, spillover from wild to domestic populations occurred both within and between regions. Wild birds mediated long-distance dispersal at intercontinental scales whereas viral spread among poultry populations was a major driver of regional spread. Viral spread between poultry flocks frequently originated from persistent lineages circulating in regions of intensive poultry production. Our analysis of long-term surveillance data demonstrates that meaningful insights can be inferred from integrating ecosystem into phylogeographic reconstructions that may be consequential for pandemic preparedness and livestock protection.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Poultry production, global trade intensity and location of viral sampling.
(A) Map showing global chicken density (millions of chickens/km2) (B) Reported trade intensity of domestic poultry 1995 to 2011 between regions (C) Locations of available viral sequences within discrete regions defined by sampling effort, poultry production and sequence data.
Fig 2
Fig 2. Phylogenetic estimation of ecological interactions and geographic spread.
(A) H9-HA phylogenetic tree for global isolates where branches are coloured according to discrete geographic region and thick and thin lines indicate ancestral transitions between natural and agricultural ecosystems respectively (B) Graph showing the proportional Markov jump counts between ecosystems over time (C) Heat maps showing mean H9 migrations estimated to and from East China per year. Heat maps for other regions are shown in S4 Fig.
Fig 3
Fig 3. Inferred migration rates and patterns.
(A) Map showing statistically supported transitions between geographic regions by ecosystem. Line thickness corresponds to viral flow rates shown in Table 2 (thinnest<0.5; ≥0.5<1; ≥1<2;≥ 2 thickest). (B) Density distribution of statistically supported mean transition rates between ecosystems. *Domestic-to-domestic rates are significantly faster than domestic-to-wild (BF>100), wild-to-domestic (BF = 62.3), and wild-to-wild (BF = 39.4). (C) Statistically supported mean migration rates per MCMC step of wild-to-wild avian transitions versus domestic-to-domestic avian transitions.

Similar articles

Cited by

References

    1. Perry BD, Grace D, Sones K. Current drivers and future directions of global livestock disease dynamics. Proc Natl Acad Sci USA. 2013;110(52):20871–20877. 10.1073/pnas.1012953108 - DOI - PMC - PubMed
    1. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013;368(20):1888–1897. 10.1056/NEJMoa1304459 - DOI - PubMed
    1. Guan Y, Shortridge KF, Krauss S, Webster RG. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci USA. 1999;96(16):9363–9367. - PMC - PubMed
    1. Vijaykrishna D, Bahl J, Riley S, Duan L, Zhang JX, Chen H, et al. Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog. 2008;4(9):e1000161 10.1371/journal.ppat.1000161 - DOI - PMC - PubMed
    1. Duan L, Bahl J, Smith GJ, Wang J, Vijaykrishna D, Zhang LJ, et al. The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology. 2008;380(2):243–254. 10.1016/j.virol.2008.07.038 - DOI - PMC - PubMed

Publication types