Protonation Dynamics on Lipid Nanodiscs: Influence of the Membrane Surface Area and External Buffers
- PMID: 27166807
- PMCID: PMC4939474
- DOI: 10.1016/j.bpj.2016.03.035
Protonation Dynamics on Lipid Nanodiscs: Influence of the Membrane Surface Area and External Buffers
Abstract
Lipid membrane surfaces can act as proton-collecting antennae, accelerating proton uptake by membrane-bound proton transporters. We investigated this phenomenon in lipid nanodiscs (NDs) at equilibrium on a local scale, analyzing fluorescence fluctuations of individual pH-sensitive fluorophores at the membrane surface by fluorescence correlation spectroscopy (FCS). The protonation rate of the fluorophores was ∼100-fold higher when located at 9- and 12-nm diameter NDs, compared to when in solution, indicating that the proton-collecting antenna effect is maximal already for a membrane area of ∼60 nm(2). Fluorophore-labeled cytochrome c oxidase displayed a similar increase when reconstituted in 12 nm NDs, but not in 9 nm NDs, i.e., an acceleration of the protonation rate at the surface of cytochrome c oxidase is found when the lipid area surrounding the protein is larger than 80 nm(2), but not when below 30 nm(2). We also investigated the effect of external buffers on the fluorophore proton exchange rates at the ND membrane-water interfaces. With increasing buffer concentrations, the proton exchange rates were found to first decrease and then, at millimolar buffer concentrations, to increase. Monte Carlo simulations, based on a simple kinetic model of the proton exchange at the membrane-water interface, and using rate parameter values determined in our FCS experiments, could reconstruct both the observed membrane-size and the external buffer dependence. The FCS data in combination with the simulations indicate that the local proton diffusion coefficient along a membrane is ∼100 times slower than that observed over submillimeter distances by proton-pulse experiments (Ds ∼ 10(-5)cm(2)/s), and support recent theoretical studies showing that proton diffusion along membrane surfaces is time- and length-scale dependent.
Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Figures




Comment in
-
Proton Dynamics at the Membrane Surface.Biophys J. 2016 May 10;110(9):1909-11. doi: 10.1016/j.bpj.2016.04.001. Biophys J. 2016. PMID: 27166799 Free PMC article. No abstract available.
Similar articles
-
Proton diffusion along biological membranes.J Phys Condens Matter. 2011 Jun 15;23(23):234103. doi: 10.1088/0953-8984/23/23/234103. Epub 2011 May 25. J Phys Condens Matter. 2011. PMID: 21613715
-
A simulation-guided fluorescence correlation spectroscopy tool to investigate the protonation dynamics of cytochrome c oxidase.Phys Chem Chem Phys. 2016 May 14;18(18):12877-85. doi: 10.1039/c5cp07925j. Epub 2016 Apr 22. Phys Chem Chem Phys. 2016. PMID: 27104936
-
Surface-coupled proton exchange of a membrane-bound proton acceptor.Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4129-34. doi: 10.1073/pnas.0908671107. Epub 2010 Feb 16. Proc Natl Acad Sci U S A. 2010. PMID: 20160117 Free PMC article.
-
Protons @ interfaces: implications for biological energy conversion.Biochim Biophys Acta. 2006 Aug;1757(8):913-30. doi: 10.1016/j.bbabio.2006.02.015. Epub 2006 Mar 24. Biochim Biophys Acta. 2006. PMID: 16624250 Review.
-
Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.Biochim Biophys Acta. 2008 Oct;1777(10):1229-48. doi: 10.1016/j.bbabio.2008.06.012. Epub 2008 Jul 11. Biochim Biophys Acta. 2008. PMID: 18671937 Review.
Cited by
-
Dynamic Protonation Dramatically Affects the Membrane Permeability of Drug-like Molecules.J Am Chem Soc. 2019 Aug 28;141(34):13421-13433. doi: 10.1021/jacs.9b04387. Epub 2019 Aug 16. J Am Chem Soc. 2019. PMID: 31382734 Free PMC article.
-
Fluorescence-based monitoring of electronic state and ion exchange kinetics with FCS and related techniques: from T-jump measurements to fluorescence fluctuations.Eur Biophys J. 2018 May;47(4):479-492. doi: 10.1007/s00249-017-1271-1. Epub 2017 Dec 19. Eur Biophys J. 2018. PMID: 29260269 Free PMC article.
-
Biophysical Characterization of Membrane Proteins Embedded in Nanodiscs Using Fluorescence Correlation Spectroscopy.Membranes (Basel). 2022 Mar 31;12(4):392. doi: 10.3390/membranes12040392. Membranes (Basel). 2022. PMID: 35448362 Free PMC article. Review.
-
Mitochondrial Calcium Increase Induced by RyR1 and IP3R Channel Activation After Membrane Depolarization Regulates Skeletal Muscle Metabolism.Front Physiol. 2018 Jun 25;9:791. doi: 10.3389/fphys.2018.00791. eCollection 2018. Front Physiol. 2018. PMID: 29988564 Free PMC article.
-
Local Attraction of Substrates and Co-Substrates Enhances Weak Acid and Base Transmembrane Transport.Biomolecules. 2022 Nov 30;12(12):1794. doi: 10.3390/biom12121794. Biomolecules. 2022. PMID: 36551222 Free PMC article. Review.
References
-
- Sackes V., Marantz Y., Gutman M. The dynamic feature of the proton collecting antenna of a protein surface. Biochim. Biophys. Acta. 1998;1365:232–240.
-
- Ädelroth P., Brzezinski P. Surface-mediated proton-transfer reactions in membrane-bound proteins. Biochim. Biophys. Acta. 2004;1655:102–115. - PubMed
-
- Heberle J. Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim. Biophys. Acta. 2000;1458:135–147. - PubMed
-
- Mulkidjanian A.Y., Heberle J., Cherepanov D.A. Protons @ interfaces: implications for biological energy conversion. Biochim. Biophys. Acta. 2006;1757:913–930. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials