Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Jun 1;171(3):639-47.
doi: 10.1042/bj1710639.

Electron-paramagnetic-resonance studies on nitrate reductase from Escherichia coli K12

Electron-paramagnetic-resonance studies on nitrate reductase from Escherichia coli K12

S P Vincent et al. Biochem J. .

Abstract

Nitrate reductase was purified from anaerobically grown Escherichia coli K12 by a method based on the Triton X-100 extraction procedure of Clegg[(1976) Biochem. J.153, 533-541], but hydrophobic interaction chromatography was used in the final stage. E.p.r. spectra obtained from the enzyme under a variety of conditions are well resolved and were interpreted with the help of the computer-simulation procedures of Lowe [(1978) Biochem. J.171, 649-651]. Parameters for five molybdenum(V) species from the enzyme are given. The low-pH species (g(av.) 1.9827) is in pH-dependent equilibrium with the high-pH species (g(av.) 1.9762), the pK for interconversion of the species being 8.26. Of a variety of anions tested, only nitrate and nitrite formed complexes with the enzyme (in the low-pH form), giving modified molybdenum(V) e.p.r. spectra. These complexes, as well as the low-pH form of the free enzyme, showed interaction of molybdenum with a single exchangeable proton. The fifth molybdenum(V) species, sometimes detected in small amounts, appears not to be due to functional nitrate reductase. After full reduction of the enzyme with dithionite, addition of nitrate caused reoxidation of molybdenum to the quinquivalent state, in a time less than the enzyme turnover. Activity of the enzyme in the pH range 6-10 is controlled by a pK of 8.2. It is suggested that the low-pH signal-giving species is the form of the enzyme involved in the catalytic cycle. Iron-sulphur and other e.p.r. signals from the enzyme are briefly described and the enzymic reaction mechanism is discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. J Biol Chem. 1971 Jan 25;246(2):374-82 - PubMed
    1. Biochemistry. 1966 Feb;5(2):467-77 - PubMed
    1. Biochem J. 1975 Dec;152(3):547-59 - PubMed
    1. J Biol Chem. 1976 Apr 25;251(8):2207-16 - PubMed

LinkOut - more resources