Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb;7(1):393.
doi: 10.4172/2155-9899.1000393. Epub 2016 Feb 17.

Role of Serum Biomarkers in Early Detection of Non-Alcoholic Steatohepatitis and Fibrosis in West Virginian Children

Affiliations

Role of Serum Biomarkers in Early Detection of Non-Alcoholic Steatohepatitis and Fibrosis in West Virginian Children

Komal Sodhi et al. J Clin Cell Immunol. 2016 Feb.

Abstract

Background: Obesity, an epidemic among West Virginia children, as well as insulin resistance (IR), is well-established contributors to nonalcoholic steatohepatitis (NASH). Progression of NASH can lead to hepatic fibrosis and cirrhosis, making early detection imperative. The standard for diagnosing NASH is histologically via liver biopsy, which is highly invasive and generally contraindicated in children. By studying serum biomarkers associated with NASH, we aim to identify high risk children who can benefit from a less invasive, alternative approach to the early detection of NASH.

Methods: Seventy one children were prospectively recruited and divided into 3 groups: normal weight without IR (control), obese without IR, and obese with IR. Serum samples were drawn for each patient and biomarker levels were assessed via ELISA kits.

Results: Obese without IR and obese with IR patients had significantly elevated levels of lipid metabolism and accumulation markers (FGF-21, NEFA, FATP5, ApoB), oxidative stress markers (dysfunctional HDL, 8-Isoprostane), inflammatory markers(dysfunctional HDL, CK-18) and apoptosis markers (CK-18) compared to control patients (p<0.02). Bilirubin (an antioxidant) was significantly decreased in the obese without IR and obese with IR patients compared to control (p<0.02).

Conclusion: This study showed a correlation between obesity, IR, and biomarkers associated with NASH in pediatrics patients from West Virginia, with obese with IR patients showing the strongest correlation. These findings support the clinical application of these serum biomarkers as a less invasive method for early detection of NASH and hepatic fibrosis.

Keywords: Biomarkers; Nonalcoholic fatty liver (NAFL); Pediatric Non-alcoholic steatohepatitis (NASH).

PubMed Disclaimer

Figures

Figure 1
Figure 1
Primary mechanisms involved in the development of NAFLD. Reactive oxygen species (ROS).
Figure 2
Figure 2
Schematic representation demonstrating lipid transport and free fatty acid (FFA) flux in insulin resistant states. Insulin resistance results in increased FFA in plasma, which leads to increased hepatocellular triglyceride (TG) concentrations. Chylomicrons, containing apoB-48, also contributes to hepatic steatosis. FFA enter the liver via fatty acid transporters (FATP), mainly FATP5. Elevated hepatic triglycerides levels leads to increased hepatocyte secretion of very low density lipoprotein (VLDL), which contains apoB-100. Insulin resistance also leads to defective hepatic mitochondrial function, resulting in decreased fatty acid oxidation in the liver.

Similar articles

Cited by

References

    1. Marzuillo P, Grandone A, Perrone L, Miraglia Del Giudice E. Controversy in the diagnosis of pediatric non-alcoholic fatty liver disease. World J Gastroenterol. 2015;21:6444–6450. - PMC - PubMed
    1. Finucane MM. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557–567. - PMC - PubMed
    1. Pappachan JM, Antonio FA, Edavalath M, Mukherjee A. Nonalcoholic fatty liver disease: a diabetologist's perspective. Endocrine. 2014;45:344–353. - PubMed
    1. Hui JM, Farrell GC. Clear messages from sonographic shadows? Links between metabolic disorders and liver disease, and what to do about them. J Gastroenterol Hepatol. 2003;18:1115–1117. - PubMed
    1. Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50:1844–1850. - PubMed