Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May-Jun;31(3):e57-64.
doi: 10.11607/jomi.4427.

Insertion Torques of Self-Drilling Mini-Implants in Simulated Mandibular Bone: Assessment of Potential for Implant Fracture

Insertion Torques of Self-Drilling Mini-Implants in Simulated Mandibular Bone: Assessment of Potential for Implant Fracture

Yara K Hosein et al. Int J Oral Maxillofac Implants. 2016 May-Jun.

Abstract

Purpose: Fracture of orthodontic mini-implants during insertion is a limiting factor for their clinical success. The purpose of this study was to determine the fracture potential of commonly used self-drilling orthodontic mini-implants when placed into simulated thick, dense mandibular bone.

Materials and methods: Six mini-implant systems were assessed for the potential for fracture (Aarhus, Medicon; Dual-Top, Jeil Medical; OrthoEasy, Forestadent; tomas-pin, Dentaurum; Unitek, 3M; and VectorTAS, Ormco). First, mini-implants were inserted manually, without predrilling, into bone substitutes (Sawbones) with a 3-mm-thick, dense (1.64 g/cm(3)) cortical layer. A custom-made insertion device was used for placement of mini-implants. A sixaxis force/torque transducer was secured at the base of the bone blocks to measure the maximum torque experienced during insertion. Measured insertion torques were compared with previously reported fracture torques, yielding a torque ratio (insertion torque as a percentage of fracture torque), which was used as an indicator of the potential for mini-implant fracture. Mini-implants that experienced torque ratios ≥ 75% upon insertion underwent further testing, following the manufacturer's recommendations for predrilling in thick, dense bone conditions.

Results: Significant differences in torque ratios were found among all mini-implants, except between OrthoEasy and Dual-Top, and OrthoEasy and VectorTAS. Overall, Aarhus had the highest torque ratio (91% ± 3%), with Unitek showing the lowest ratio (37% ± 3%). Aarhus and tomas-pin mini-implants displayed torque ratios ≥ 75% and experienced fracture upon insertion. When the manufacturer's specific predrilling recommendations were followed, no changes in torque ratio were found for Aarhus and tomas-pin. However, while Aarhus continued to fracture upon insertion, all tomas-pin mini-implants were inserted fully without fracture following predrilling.

Conclusion: These findings support the safe use of Unitek, VectorTAS, Dual-Top, and OrthoEasy self-drilling mini-implants in areas of 3-mm-thick, 1.64 g/cm(3) dense cortical bone without predrilling. Following predrilling, fractures did not occur with tomas-pin. For implants that continued to fracture after predrilling, other strategies may be required, such as the use of larger-diameter mini-implants in thick, dense bone conditions.

PubMed Disclaimer

LinkOut - more resources